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ABSTRACT
Deployment of SSDs in enterprise settings is limited by the
low erase cycles available on commodity devices. Redun-
dancy solutions such as RAID can potentially be used to pro-
tect against the high Bit Error Rate (BER) of aging SSDs.
Unfortunately, such solutions wear out redundant devices at
similar rates, inducing correlated failures as arrays age in
unison. We present Diff-RAID, a new RAID variant that
distributes parity unevenly across SSDs to create age dispari-
ties within arrays. By doing so, Diff-RAID balances the high
BER of old SSDs against the low BER of young SSDs. Diff-
RAID provides much greater reliability for SSDs compared
to RAID-4 and RAID-5 for the same space overhead, and
offers a trade-off curve between throughput and reliability.

1. INTRODUCTION
Solid State Devices (SSDs) have emerged in the last few
years as a viable secondary storage option for laptops and
personal computers. Now, SSDs are poised to replace con-
ventional disks within large-scale data centers, potentially
providing massive gains in I/O throughput and power effi-
ciency for high-performance applications. The major barrier
to SSD deployment in such settings is cost [3]. This barrier
is gradually being lifted through high-capacity Multi-Level
Cell (MLC) technology, which has driven down the cost of
flash storage significantly.

Yet, MLC devices are severely hamstrung by low endurance
limits. Individual flash blocks within an SSD require expen-
sive erase operations between successive page writes. Each
erasure makes the device less reliable, increasing the Bit Er-
ror Rate (BER) observed by accesses. Consequently, SSD
manufacturers specify not only a maximum BER (usually
between 10−14 to 10−15 [2], as with conventional hard disks),
but also a limit on the number of erasures within which this
BER guarantee holds. For MLC devices, the rated erasure
limit is typically 5,000 to 10,000 cycles per block; as a re-

sult, a write-intensive workload can wear out the SSD within
months. Also, this erasure limit continues to decrease as
MLC devices increase in capacity and density. As a conse-
quence, the reliability of MLC devices remains a paramount
concern for its adoption in servers [4].

In this paper, we explore the possibility of using device-level
redundancy to mask the effects of aging on SSDs. Clustering
options such as RAID can potentially be used to tolerate the
higher BERs exhibited by worn out SSDs. However, these
techniques do not automatically provide adequate protec-
tion for aging SSDs; by balancing write load across devices,
solutions such as RAID-5 cause all SSDs to wear out at ap-
proximately the same rate. Intuitively, such solutions end
up trying to protect data on old SSDs by storing it redun-
dantly on other, equally old SSDs. Later in the paper, we
quantify the ineffectiveness of such an approach.

We propose Differential RAID (Diff-RAID), a new RAID
technique designed to provide a reliable server storage so-
lution using MLCs. Diff-RAID leverages the fact that the
BER of an SSD increases continuously through its lifetime,
starting out very low and reaching the maximum specified
rate as it wears out. Accordingly, Diff-RAID attempts to
create an age differential among devices in the array, bal-
ancing the high BER of older devices against the low BER
of young devices.

To create and maintain this age differential, Diff-RAID mod-
ifies conventional RAID in two ways. First, it distributes
parity unequally across devices; since parity blocks are up-
dated more frequently than data blocks due to random writes,
this unequal distribution forces some devices to age faster
than others. Diff-RAID supports arbitrary parity assign-
ments, providing a trade-off curve between throughput and
reliability. Second, Diff-RAID redistributes parity during
device replacements to ensure that the oldest device in the
array always holds the most parity and ages at the highest
rate. When the oldest device in the array is replaced at
some threshold age, its parity blocks are assigned across all
the devices in the array and not just to its replacement.

Diff-RAID’s ability to tolerate high BERs on aging SSDs
provides multiple advantages. First, it provides a much
higher degree of reliability for SSD arrays compared to stan-
dard RAID-5 or RAID-4 configurations. Second, it opens
the door to using commodity SSDs past their erasure limit,



protecting the data on expired SSDs by storing it redun-
dantly on younger devices. Third, it potentially reduces the
need for expensive hardware Error Correction Codes (ECC)
in the devices; as MLC densities continue to increase, the
cost of masking high error rates with ECC is prohibitive.
These benefits are achieved at a slight cost in throughput
degradation and in device replacement complexity; these
trade-offs are explored in detail below.

2. PROBLEM STATEMENT
NAND-based SSDs exhibit failure behaviors which differ
substantially from hard disks. Most crucially, the Bit Error
Rate (BER) of modern SSDs is uniform across all disk pages,
and grows strongly with the number of updates the SSD
receives. In order to understand this behavior, we briefly
overview basic features of SSDs.

SSDs are composed of pages, which are the smallest units
that can be read or programmed (written). Pages are struc-
tured together into larger units called blocks, which are the
smallest units that can be erased (all bits reset to 1s). Shar-
ing erasure circuitry across multiple pages allows for higher
bit densities by freeing up chip area, reducing overall cost.
Bits can only be programmed in one direction, from 1s to 0s;
as a result, a rewrite to a specific page requires an erasure
of the block containing the page.

Modern SSDs provide excellent performance despite these
design restrictions by using wear-levelling algorithms that
store data in log format on flash. These wear-levelling al-
gorithms ensure that wear is spread evenly across the SSD,
resulting in a relatively uniform BER across the SSD. How-
ever, SSDs are still subject to an erasure limit, beyond which
the BER of the device becomes unacceptably high. SSDs
typically use hardware ECC to correct bit errors and extend
the erasure limit; in this paper, we use the term BER to re-
fer to the post-ECC error rate, also called the Uncorrectable
Bit Error Rate (UBER), unless specified otherwise.

First-generation SSDs used SLC (Single-Level Cell) flash,
where each flash cell stores a single bit value. This variant
of flash has relatively high endurance limits – around 100,000
erase cycles per block – but is prohibitively expensive; as a
result, it is now used predominantly in top-tier SSDs meant
for high-performance applications. Recently, the emergence
of MLC (Multi-Level Cell) technology has dropped the price
of SSDs significantly (for example, the Intel X25-M [1] is
a popular MLC SSD priced at $4 per GB at the time of
writing), storing multiple bits within each flash cell to ex-
pand capacity without increasing cost. However, MLC de-
vices have a major drawback: the endurance limit drops
to around 10,000 erase cycles per block. As flash geome-
tries shrink and MLC technology packs more bits into each
cell, the price of SSDs is expected to continue decreasing;
unfortunately, their pre-ECC BER is expected to increase,
creating the possibility of lower erasure limits.

In this paper, we re-examine the use of standard device-level
redundancy techniques in face of the unreliability character-
istics of MLC devices, as they approach and cross the erasure
limit. Since, as we noted above, SSDs differ from hard disks
in fundamental ways, this requires a rethink of traditional
redundancy solutions such as RAID.

3. WHY NOT RAID?
RAID techniques induce similar update loads on multiple
disks, which in turn, may induce correlated failures in SSDs
as noted above. For RAID-1, RAID-10 and RAID-01, mir-
rors are exposed to identical workloads and grow old to-
gether. All the devices in RAID-5 receive roughly equiva-
lent workloads and age at similar rates. RAID-4 does im-
pose a slightly staggered wear-out schedule; the parity device
wears out at a much faster rate than the other devices for
workloads dominated by random writes, and has to be re-
placed much before them. However, the non-parity devices
in RAID-4 age at similar rates. Thus, each of these RAID
options imposes a lock-step wear-out schedule on devices in
the array.

As long as each SSD is replaced immediately as it hits the
erasure limit, the SSD array is as reliable as an array con-
structed from hard disks of comparable maximum BER.
However, if the SSDs are allowed to continue past their era-
sure limit, the reliability of the array falls drastically. Hence,
when one of the devices fails, the probability of another fail-
ure during the RAID reconstruction is very high. Conse-
quently, the overall reliability of conventional RAID arrays
of SSDs varies highly, hitting a peak as multiple devices
reach their erasure limit simultaneously. A more quantita-
tive analysis of this is given in Section 5 below.

Essentially, the wear-out schedule imposed on different de-
vices by a redundancy scheme heavily impacts the overall
reliability of the array. The load balancing properties of
schemes such as RAID-5 – which make them so attractive
for hard disks – result in lower array reliability for SSDs.
They induce a lock-step SSD wear-out schedule that leaves
the array vulnerable to correlated failures.

Required is a redundancy scheme that can distribute writes
unevenly across devices, creating an imbalance in update
load across the array. Such a load imbalance will translate
into different aging rates for SSDs, allowing staggered device
wear-outs over the lifetime of the array and reducing the
probability of correlated failure. This observation leads us to
introduce novel RAID variants, which we collectively name
Diff-RAID.

4. DESIGN
The goal of Diff-RAID is to use device-level redundancy to
mask the high BERs of aging SSDs. The basic idea is to store
data redundantly across devices of different ages, balancing
the high BER of old SSDs past their erasure limit against
the low BER of young SSDs. Diff-RAID implements this
idea by creating and maintaining age differentials within a
RAID array.

We measure the age of a device by the average number of
cycles used by each block in it, assuming a perfect wear-
levelling algorithm that equalizes this number across blocks.
For example, if each block within a device has used up
roughly 7,500 cycles, we say that the device has used up
7,500 cycles of its lifetime.

Diff-RAID controls the aging rates of different devices in the
array by distributing parity blocks unevenly across them.
Random writes cause parity blocks to attract much more
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Figure 1: Age distribution of the array during its
first two device replacements; age-driven shuffling
ensures that SSD-1 holds 70% of the parity after
the first replacement.

write traffic than data blocks; on every random write to a
data block, the corresponding parity block has to be updated
as well. As a result, an SSD with more parity receives a
higher number of writes and ages correspondingly faster.

We represent parity assignments with n-tuples of percent-
ages; for example, (40, 15, 15, 15, 15) represents a 5-device
array where the first device holds 40% of the parity and the
other devices store 15% each. An extreme example of uneven
parity assignment is RAID-4, represented by (100, 0, 0, 0, 0)
for 5 devices, where the first device holds all the parity. At
the other extreme is RAID-5, represented by (20, 20, 20, 20, 20)
for 5 devices, where parity is distributed evenly across all de-
vices.

For a workload consisting only of random writes, it is easy
to compute the relative aging rates of devices for any given
parity assignment. For an n device array, if aij represents
the ratio of the aging rate of the ith device to that of the jth
device, and pi and pj are the percentages of parity allotted
to the respective devices, then:

aij = pi∗(n−1)+(100−pi)
pj∗(n−1)+(100−pj)

In the example of 5-device RAID-4, the ratio of the aging
rate of the parity device to that of any other device would
be 100∗4+0

0∗4+100
= 4; in other words, the parity device ages four

times as fast as any other device. Since RAID-4 is an ex-
treme example of uneven parity assignment, it represents an
upper bound on the disparity of aging rates in an array; all

other parity assignments will result in less disparity, with
RAID-5 at the other extreme providing no disparity.

Ideally, we would like the aging rate of a device to be pro-
portional to its age, so that the older a device, the faster it
ages. The intuition here is simple: the presence of an old
SSD makes the array more unreliable, and hence we want to
use up its erase cycles rapidly and remove it as soon as pos-
sible. Conversely, young SSDs make the array more reliable,
and hence we want to keep them young as long as possible.
If two SSDs are at the same age, we want to age one faster
than the other in order to create an imbalance in ages.

To understand this intuition better, consider a conventional
RAID-4 array. With a workload of random writes, the data
devices in the array will be at approximately 2,500 erase
cycles each when the parity device hits 10,000 cycles and is
replaced. After three such replacements of the parity device,
the data devices will all be at 7,500 cycles, resulting in an
aging and unreliable array.

Consequently, on every device replacement, we shuffle the
logical positions of the devices in the array to order them
by age, before applying the parity assignment to them. In
the simple example of RAID-4, each time a parity device is
replaced, the oldest of the remaining data devices becomes
the new parity device (breaking ties arbitrarily), whereas
the new replacement device becomes a data device.

Figure 1 illustrates this scheme for a 4-device array with a
parity assignment of (70, 10, 10, 10); by the formula given
previously, this assignment results in the first device aging
twice as fast as the other three devices. As a result, when
SSD-0 reaches 10,000 erase cycles, the other three SSDs are
at 5,000 cycles. When SSD-0 is replaced, SSD-1 is assigned
70% of the parity blocks, and the other SSDs (including the
new one) are assigned 10% each.

Interestingly, if we continue this age-driven shuffling over
multiple replacements for a given parity assignment, the de-
vice ages observed at replacement time eventually converge
to a stationary distribution. Figure 2 plots the distribu-
tion of device ages at replacement time for a 5-device array
with a parity assignment of (100, 0, 0, 0, 0); essentially, this
is RAID-4 with the parity shifting to the oldest remain-
ing device on each replacement. After a small number of
replacements, the ages of the devices at replacement time
converge so that the oldest remaining device is always at
5,000 erase cycles, with the other devices at 3,750, 2,500
and 1,250 cycles respectively. We can calculate the conver-
gent age distribution for any parity assignment — we omit
details for lack of space.

Diff-RAID provides a trade-off between reliability and through-
put. The Diff-RAID parity assignment corresponding to
RAID-4 provides the least throughput – with the single par-
ity device acting as a bottleneck – but the highest reliability,
and the one corresponding to RAID-5 provides the highest
throughput but the least reliability. Since Diff-RAID sup-
ports any arbitrary parity assignment, administrators can
choose a point on the trade-off curve that fits their require-
ments. Potentially, Diff-RAID itself could adaptively choose
the most reliable parity assignment for a given throughput
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Figure 2: Age distribution of devices for Diff-RAID parity assignment (100, 0, 0, 0, 0) (i.e., RAID-4 with age-
driven shuffling on device replacements). Each set of bars represents the age distribution of devices in the
array when the oldest SSD wears out.

level as the write performance required by the workload fluc-
tuates.

When a device is replaced and a new device takes its place,
age-driven shuffling of the parity assignments has to occur.
One implementation option involves treating a device re-
placement as a failure and triggering the RAID reconstruc-
tion process to rebuild the contents of the replaced SSD on a
new device, but modifying the reconstruction logic so that it
interchanges parity blocks and data blocks on different SSDs
to achieve the required parity assignment over a shuffled or-
dering of the devices. We expect to explore different imple-
mentation options that perform device replacement without
triggering RAID reconstruction logic, as well.

5. SIMULATION RESULTS
In this section, we show through simulation that Diff-RAID
provides much better reliability for SSD arrays than con-
ventional RAID. Also, we show that Diff-RAID can push
inexpensive, low-end SSDs to twice their rated erasure limit
without compromising the overall reliability of the array. We
model the Bit Error Rate of an individual SSD using data
in a study published by Intel and Micron [2]. That paper
contains raw (pre-ECC) BERs for four MLC devices up to
10,000 erase cycles, of which one device is rated at 5,000
cycles. We use the raw BER curve of this 5,000 cycle device
as a starting point, assume 2-bit ECC, and modify the re-
sulting UBER data slightly to obtain a smooth curve that
hits an UBER of 10−14 at 5,000 cycles, comparable to the
UBER of SATA hard disks.

We quantify the reliability of a RAID array by considering
a common failure mode — a disk fails in the array, and dur-
ing reconstruction an uncorrectable bit error is encountered
elsewhere in the array, resulting in the loss of data. For a 6-
disk RAID-5 array of 80 GB SATA disks (with UBER equal
to 10−14), the probability of data loss given a disk failure
is around 3%, which remains fairly constant throughout the
lifetime of the array. In other words, for every 100 instances
of a disk failure in such an array, roughly 3 will experience
some data loss.

Figure 3 illustrates the difference between conventional RAID-
5 and RAID-4 used with SSDs and a Diff-RAID parity as-

signment corresponding to RAID-4. The parity assignment
used by Diff-RAID is (1, 5, 5, 5, 5, 5) — effectively, the only
difference between conventional RAID-4 and the Diff-RAID
version is the age-driven shuffling of parity on each device
replacement. Conventional RAID-5 causes all SSDs age in
lock-step fashion, and conventional RAID-4 does so with
the data devices; as a result, the probability of data loss
on an SSD failure climbs to almost 1 for both solutions as
the array ages, and periodically resets to almost zero when-
ever all SSDs are replaced simultaneously. In contrast, Diff-
RAID never experiences a data loss probability of more than
17%, and once the age distribution converges, it consistently
maintains a data loss probability under 4%, which is compa-
rable to the 3% data loss probability of a SATA disk array.
In this simulation, we assume that the oldest device in the
array fails initially, and compute the probability of data loss
in the remaining devices; if any device is allowed to fail
initially with equal probability, the RAID-5 curve remains
unchanged, the RAID-4 curve does not change significantly,
and the Diff-RAID curve is bounded at 35%.

Figure 4 shows the space of possible Diff-RAID configura-
tions for a 6-device array. Each point in this graph rep-
resents a different parity assignment; on the x-axis is the
throughput of the solution as a fraction of the total array
throughput, and on the y-axis is the probability of data loss
upon a device failure. As expected, the parity assignment
corresponding to RAID-4 is on one extreme of the trade-off
curve, providing high reliability but very low throughput,
and the assignment corresponding to RAID-5 is at the op-
posite end, with high throughput but very low reliability.

Sequential Writes: So far, we have assumed a workload
consisting only of random writes. Sequential writes that up-
date the entire stripe can potentially reduce the reliability
of a Diff-RAID array, since they reduce the ability of parity
blocks to imbalance write load. When we ran the experi-
ment shown in Figure 3 with a workload consisting of 10%
sequential writes, the worst case unreliability for Diff-RAID
in the initial period climbed to 23%; after convergence, the
unreliability stays under 8%. With a workload where se-
quential writes comprise 50% of all writes, Diff-RAID is still
bounded at 25% unreliability after convergence, providing 4
times the reliability of conventional RAID-4 and RAID-5. In
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the worst case where all writes are sequential, Diff-RAID de-
grades to provide reliability identical to conventional RAID.

6. FUTURE WORK
We are currently implementing Diff-RAID as a software RAID
driver. We hope that such an implementation will provide
insight into the end-to-end performance of SSD-based stor-
age stacks. With commodity RAID controllers – or soft-
ware RAID running on conventional machines – it is pos-
sible that the RAID logic is the bottleneck for the random
write throughput of the array. In this case, we will not see
the throughput reliability trade-off described in Figure 4;
instead, the throughput of all configurations will lie under
an upper threshold.

We expect the Diff-RAID implementation to have a pol-
icy component that determines which parity assignment to
use. As mentioned previously, the policy could select the
most reliable configuration below the application’s through-
put requirement; alternately, it could factor in the maxi-
mum throughput possible with the hardware setup. Also,
Diff-RAID could allow the application to specify a threshold
level of data loss probability and select the highest through-
put configuration under that threshold.

While this paper focuses on parity-based RAID, other schemes
which use mirroring (such as RAID-1 or RAID-10) are vul-
nerable to correlated aging as well. Diff-RAID does not im-
mediately generalize to mirroring, since it uses the higher
write load of parity blocks to age SSDs differentially. Dif-
ferent techniques are required to combat correlated aging in
mirrored RAID setups.

In general, the large-scale introduction of SSDs into clus-
tered settings poses many interesting questions. System ad-
ministrators may be required to track the age of individual
devices and define proactive replacement policies. Also, con-
sidering a larger pool of SSDs – as opposed to a single array
– may allow for solutions that are more effective at creating
age differentials.

7. CONCLUSION
Diff-RAID is a new RAID variant designed specifically for
SSDs. It distributes parity unevenly across the array to
force devices to age at different rates, and redistributes this
parity on each device replacement. By doing so, Diff-RAID
maintains an age differential between devices in the RAID
array, balancing the high BER of aging devices against the
low BERs of younger devices and reducing the chances of
correlated failures. Compared to conventional RAID-5 or
RAID-4, Diff-RAID provides a higher degree of reliability for
SSDs for the same space overhead, and provides a trade-off
curve between throughput and reliability. It can potentially
be used to operate SSDs past their erasure limit, as well as
reduce the need for expensive ECC within SSDs.
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