12/17/2008

Live Migration of Direct-Access
Devices

Asim Kadav and Michael M. Swift
University of Wisconsin - Madison

Live Migration

Migrating VM across different hosts without
noticeable downtime

Uses of Live Migration

— Reducing energy consumption by hardware consolidation
— Perform non-disruptive hardware maintenance

Relies on hypervisor mediation to maintain
connections to 1/O devices

— Shared storage
— Virtual NICs

12/17/2008

Live Migration with virtual I/0

Source Host Destination Host

G oS Device state
uest available to

Virtual Driver hypervisor.

Hypervisor + OS <:> Hypervisor + osﬁ

{ Hardware Devicei:ﬁ VMM abstracts [Hardware Devicei%
the hardware

Access to I/O Devices

Virtual I/0

Guest OS Guest accesses virtual devices
* Drivers run outside guest OS
Hypervisor + 03 * Hypervisor mediates all I/O

Physical Hardware |
Device

Moderate performance
Device independence
Device sharing

= Enables migration

J

Virtual I/O Architecture

Direct access to I/O Devices

Direct /O
e Driversrun in Guest OS

Guest OS)
Real Driver * Guest directly accesses
device
Hypervisor
[Physical Hardware J = Near native performance
Device

= No migration

Direct I/O Architecture
(Pass-through 1/0)

Live Migration with Direct I/O

Source Host Destination Host
Guest OS
Hypervisor + OS Hypervisor + Osﬁ

Hardware Device [Hardware Devicev]

Device State lost

No Heterogeneous
Devices 6

12/17/2008

Live migration with Direct I/0O

* Why not both performance and migration?
— Hypervisor unaware of device state
— Heterogeneous devices/drivers at source and destination

* Existing Solutions :
— Detach device interface and perform migration [Xen 3.3]
— Detach device and divert traffic to virtual /O [zhai OLS 08]
— Modify driver and device [Varley (Intel) ISSO03 08]

Overview

* Problem
— Direct I/O provides native throughput
— Live migration with direct I/O is broken

* Solution
— Shadow drivers in guest OS capture device/driver state
— Transparently re-attach driver after migration

* Benefits
— Requires no modifications to the driver or the device
— Supports migration of/to different devices
— Causes minimal performance overhead

12/17/2008

Outline

Introduction

Architecture

Implementation

Evaluation

Conclusions

Architecture

* Goals for Live Migration
— Low performance cost when not migrating
— Minimal downtime during migration
— No activity executing in guest pre-migration

* Qur Solution
— Introduce agent in guest OS to manage migration
— Leverage shadow drivers as the agent [swift 0sDI04]

10

12/17/2008

Shadow Drivers

Guest OS

Kernel agent that Kernel

monitors the state of the
driver Shadow

Driver

Recovers from driver

failures :
Device

Driver independent Driver

One implementation per

device type [_pevice]

11

Shadow Driver Operation

Tracker Log

* Normal Operation . Guest OS
- Intercept Calls - Kernel

* Recovery

Track shared objects \

. . Shadow
Log state changing operations

Driver

Proxy to kernel
Release old objects
Restart driver

Replay log [Device

12

12/17/2008

Shadow Drivers for Migration

* Pre Migration

— Record driver/device state in driver-independent
way

— Shadow driver logs state changing operations
* configuration requests, outstanding packets
* Post Migration
— Unload old driver
— Start new driver
— Replay log to configure driver

13

Shadow Drivers for Migration

* Transparency
— Taps route all I/O requests to the shadow driver
— Shadow driver can give an illusion that the device is up

* State Preservation
— Always store only the absolute current state
— No history of changes maintained
— Log size only dependent on current state of the driver

14

12/17/2008

Migration with shadow drivers

Tracker Log

- . Guest OS Kernel

\ Shadow 1“5 I Teps

Driver T
T Source 7 Source
Destl_natlon Network Network
Hypervisor + OS Driver Driver
p

[Source Network Card] [Dest. Network Card]

15

Outline

Introduction
Overview
Architecture
Implementation
Evaluation
Conclusions

16

12/17/2008

Implementation

* Prototype Implementation
— VMM: Xen 3.2 hypervisor
— Guest VM based on linux-2.6.18.8-xen kernel

* New code: Shadow Driver implementation
inside guest OS

* Changed code: Xen hypervisor to enable
migration

* Unchanged code: Device drivers

17

Changes to Xen Hypervisor

* Migration code modified to allow

Guest

— Allow migration of PCl devices

— Unmap I/O memory mapped at the
source

— Detach virtual PCI bus just before VM
suspension at source and reconnect Hypervisor
virtual PCl bus at the destination

— Added ability to migrate between different
devices

18

12/17/2008

Modifications to the Guest OS

* Ported shadow drivers to 2.6.18.8-xen kernel
— Taps
— Object tracker
— Log
* Implemented shadow driver for network
devices
— Proxy by temporarily disabling device
— Log ioctl calls, multicast address
— Recovery code

19

Outline

Introduction

Architecture

Implementation

Evaluation

Conclusions

20

12/17/2008

10

Evaluation

1. Cost when not migrating
2. Latency of Migration

21

Evaluation Platform

* Host machines
— 2.2GHz AMD machines
— 1 GB Memory
* Direct Access Devices
— Intel Pro/1000 gigabit Ethernet NIC
— NVIDIA MCP55 Pro gigabit NIC
* Tests
— Netperf on local network
— Migration with no applications inside VM
— Liveness tests from a third physical host

22

12/17/2008

11

1000

CPU Utilization in the guest VM

5%

0%

m Vi
5 80 773769 Virtual I/0O -
S m Direct I/O

(0]
% 600 - Direct I/O (SD) —
g

c 400 -
5

Q.
< 200 -

35

2
= 0+

Intel Pro/1000 NVIDIA MCP55
Direct 1/0 is 33% better than virtual 1/0.
Direct /O with shadow throughput within 1% of original .
CPU Utilization
20%
17.70%)
m Virtual I/O
15% —13.80% m Direct I/O -
Direct I/O (SD)
10% +—| | i 9.16%

D3%

30% .

Intel Pro/1000 NVIDIA MCP55

Direct I/O with shadow CPU utilization within 1% of original

24

12/17/2008

12

Migration Time

wla aim)

Events II‘ -I
TimelLine

| Total Downtime = 3.97
Time (in 1 2 3 4 seconds

seconds)
Significant migration latency(56%) is in driver uptime.

u PCl Unplug
H VM Migration
m PCl Replug

Shadow Recovery

B Driver Uptime
m ARP Sent

25

Conclusions

Shadow Drivers used as an agent to perform
live migration of VMs performing direct access

Supports heterogeneous devices
Requires no driver or hardware changes

Minimal performance overhead and latency
during migration
Portable to other devices, OS and hypervisors

26

12/17/2008

13

12/17/2008

Questions

Contact : {kadav, swift} @cs.wisc.edu
More details:

http://cs.wisc.edu/~swift/drivers/

http://cs.wisc.edu/~kadav/

Backup Slides

14

Complexity of Implementation

* ~19000 LOCs

* Bulk of this (~70%) are wrappers around
functions.
— Can be automatically generated by scripts

29

Migration Time

2

[

H1
:<; CDJ) H PCl Unplug
3* B VM Migration
g! I ‘ - " o
% Shadow Recovery
® —‘—'—’— ® Driver Uptime
Total downtime =3.97 seconds H ARP Sent
Time (in
seconds) 1 2 3 4

Significant migration latency(56%) is in driver uptime.

30

12/17/2008

15

Migration with shadow drivers

Tracker Log

Guest
- . Kernel

\ Shadow

0S

\ I Taps

Driver

i

Destination
Hypervisor
+0S

Source) Dest.
Network Network
Driver) {_ Driver

N
Source Destination
Network Card) Network Card

12/17/2008

16

