
12/17/2008

1

Live Migration of Direct-Access

Devices

Asim Kadav and Michael M. Swift

University of Wisconsin - Madison

Live Migration

• Migrating VM across different hosts without

noticeable downtime

• Uses of Live Migration

– Reducing energy consumption by hardware consolidation

– Perform non-disruptive hardware maintenance

• Relies on hypervisor mediation to maintain

connections to I/O devices

– Shared storage

– Virtual NICs

2

12/17/2008

2

Live Migration with virtual I/O

Hardware Device

Hypervisor + OS

Guest OS

Virtual Driver

Hardware Device

Hypervisor + OS

VMM abstracts

the hardware

Device state

available to

hypervisor.

3

Source Host Destination Host

Access to I/O Devices

Physical Hardware

Device

Guest OS

Virtual Driver

HypervisorHypervisor + OS

Virtual I/O Architecture

Virtual I/O

• Guest accesses virtual devices

• Drivers run outside guest OS

• Hypervisor mediates all I/O

� Moderate performance

� Device independence

� Device sharing

� Enables migration

4

12/17/2008

3

Direct access to I/O Devices

Hypervisor

Guest OS

Direct I/O Architecture

(Pass-through I/O)

Direct I/O

• Drivers run in Guest OS

• Guest directly accesses

device

� Near native performance

� No migration

Real Driver

Physical Hardware

Device

5

Live Migration with Direct I/O

Hypervisor + OS Hypervisor + OS

Device State lost

No Heterogeneous

Devices 6

Guest OS

Real Driver

Source Host Destination Host

Hardware Device Hardware Device

12/17/2008

4

Live migration with Direct I/O

• Why not both performance and migration?

– Hypervisor unaware of device state

– Heterogeneous devices/drivers at source and destination

• Existing Solutions :

– Detach device interface and perform migration [Xen 3.3]

– Detach device and divert traffic to virtual I/O [Zhai OLS 08]

– Modify driver and device [Varley (Intel) ISSOO3 08]

7

Overview

• Problem
– Direct I/O provides native throughput

– Live migration with direct I/O is broken

• Solution
– Shadow drivers in guest OS capture device/driver state

– Transparently re-attach driver after migration

• Benefits
– Requires no modifications to the driver or the device

– Supports migration of/to different devices

– Causes minimal performance overhead

8

12/17/2008

5

Outline

• Introduction

• Architecture

• Implementation

• Evaluation

• Conclusions

9

Architecture

• Goals for Live Migration

– Low performance cost when not migrating

– Minimal downtime during migration

– No activity executing in guest pre-migration

• Our Solution

– Introduce agent in guest OS to manage migration

– Leverage shadow drivers as the agent [Swift OSDI04]

10

12/17/2008

6

Shadow Drivers

• Kernel agent that

monitors the state of the

driver

• Recovers from driver

failures

• Driver independent

• One implementation per

device type

Guest OS

Kernel

Shadow

Driver

Device

Driver

Device

11

Taps

Shadow Driver Operation

Guest OS

Kernel

Shadow

Driver

Device

Driver

Device

• Normal Operation

- Intercept Calls

- Track shared objects

- Log state changing operations

• Recovery

- Proxy to kernel

- Release old objects

- Restart driver

- Replay log

12

Taps

LogTracker

12/17/2008

7

Shadow Drivers for Migration

• Pre Migration

– Record driver/device state in driver-independent
way

– Shadow driver logs state changing operations

• configuration requests, outstanding packets

• Post Migration

– Unload old driver

– Start new driver

– Replay log to configure driver

13

Shadow Drivers for Migration

• Transparency

– Taps route all I/O requests to the shadow driver

– Shadow driver can give an illusion that the device is up

• State Preservation

– Always store only the absolute current state

– No history of changes maintained

– Log size only dependent on current state of the driver

14

12/17/2008

8

Migration with shadow drivers

Guest OS Kernel

Shadow

Driver

Source

Network

Driver

Source Network Card

Destination

Network

Driver

Dest. Network Card

Taps

LogTracker

Source

Hypervisor + OS

Destination

Hypervisor + OS

15

Source

Network

Driver

Outline

• Introduction

• Overview

• Architecture

• Implementation

• Evaluation

• Conclusions

16

12/17/2008

9

Implementation

• Prototype Implementation

– VMM: Xen 3.2 hypervisor

– Guest VM based on linux-2.6.18.8-xen kernel

• New code: Shadow Driver implementation

inside guest OS

• Changed code: Xen hypervisor to enable

migration

• Unchanged code: Device drivers

17

Changes to Xen Hypervisor

• Migration code modified to allow

– Allow migration of PCI devices

– Unmap I/O memory mapped at the

source

– Detach virtual PCI bus just before VM

suspension at source and reconnect

virtual PCI bus at the destination

– Added ability to migrate between different

devices

18

Xen

Hypervisor

Guest

VM

PCI

Bus

12/17/2008

10

Modifications to the Guest OS

• Ported shadow drivers to 2.6.18.8-xen kernel

– Taps

– Object tracker

– Log

• Implemented shadow driver for network
devices

– Proxy by temporarily disabling device

– Log ioctl calls, multicast address

– Recovery code

19

Outline

• Introduction

• Architecture

• Implementation

• Evaluation

• Conclusions

20

12/17/2008

11

Evaluation

1. Cost when not migrating

2. Latency of Migration

21

Evaluation Platform

• Host machines

– 2.2GHz AMD machines

– 1 GB Memory

• Direct Access Devices

– Intel Pro/1000 gigabit Ethernet NIC

– NVIDIA MCP55 Pro gigabit NIC

• Tests

– Netperf on local network

– Migration with no applications inside VM

– Liveness tests from a third physical host

22

12/17/2008

12

Throughput

698 706.2

773

940.5

769

937.7

0

200

400

600

800

1000

Intel Pro/1000 NVIDIA MCP55

Virtual I/O

Direct I/O

Direct I/O (SD)

T
h

ro
u

g
h

p
u

t
in

 M
b

it
s/

se
co

n
d

23

Direct I/O is 33% better than virtual I/O.

Direct I/O with shadow throughput within 1% of original

CPU Utilization

13.80%

17.70%

2.80%

8.03%

4.00%

9.16%

0%

5%

10%

15%

20%

Intel Pro/1000 NVIDIA MCP55

Virtual I/O

Direct I/O

Direct I/O (SD)

C
P

U
 U

ti
li

za
ti

o
n

 i
n

 t
h

e
 g

u
e

st
 V

M

24
Direct I/O with shadow CPU utilization within 1% of original

12/17/2008

13

Migration Time

1 2 3 4

Events Timeline

PCI Unplug

VM Migration

PCI Replug

Shadow Recovery

Driver Uptime

ARP Sent

Time (in

seconds)

Significant migration latency(56%) is in driver uptime.

25

G

H1 H2

D

Total Downtime = 3.97

seconds

Events

TimeLine

Conclusions

• Shadow Drivers used as an agent to perform

live migration of VMs performing direct access

• Supports heterogeneous devices

• Requires no driver or hardware changes

• Minimal performance overhead and latency

during migration

• Portable to other devices, OS and hypervisors

26

12/17/2008

14

Questions

27

Contact : {kadav, swift} @cs.wisc.edu

More details:

http://cs.wisc.edu/~swift/drivers/

http://cs.wisc.edu/~kadav/

Backup Slides

28

12/17/2008

15

Complexity of Implementation

• ~19000 LOCs

• Bulk of this (~70%) are wrappers around

functions.

– Can be automatically generated by scripts

29

Migration Time

1 2 3 4

E
ve

n
ts T

im
e

lin
e

PCI Unplug

VM Migration

PCI Replug

Shadow Recovery

Driver Uptime

ARP Sent

Time (in

seconds)

Total downtime = 3.97 seconds

Significant migration latency(56%) is in driver uptime.

30

G

H1 H2

D

12/17/2008

16

Migration with shadow drivers

Guest OS

Kernel

Shadow

Driver

Source

Network

Driver

Source

Network Card

Dest.

Network

Driver

Destination

Network Card

Taps

31

LogTracker

Source

Hypervisor

+ OS

Destination

Hypervisor

+ OS

