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Live Migration

• Migrating VM across different hosts without 

noticeable downtime

• Uses of Live Migration

– Reducing energy consumption by hardware consolidation

– Perform non-disruptive hardware maintenance

• Relies on hypervisor mediation to maintain 

connections to I/O devices

– Shared storage

– Virtual NICs
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Live Migration with virtual I/O
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VMM abstracts 

the hardware

Device state 

available to 

hypervisor.
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Virtual I/O Architecture

Virtual I/O

• Guest accesses virtual devices

• Drivers run outside guest OS

• Hypervisor mediates all I/O

� Moderate performance

� Device independence 

� Device sharing

� Enables migration
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Direct access to I/O Devices
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• Drivers run in Guest OS

• Guest directly accesses 

device

� Near native performance
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Live Migration with Direct I/O
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Live migration with Direct I/O

• Why not both performance and migration?

– Hypervisor unaware of device state

– Heterogeneous devices/drivers at source and destination

• Existing Solutions :

– Detach device interface and perform migration [Xen 3.3]

– Detach device and divert traffic to virtual I/O [Zhai OLS 08]

– Modify driver and device [Varley (Intel) ISSOO3 08]
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Overview

• Problem
– Direct I/O provides native throughput

– Live migration with direct I/O is broken

• Solution
– Shadow drivers in guest OS capture device/driver state

– Transparently re-attach driver after migration

• Benefits
– Requires no modifications to the driver or the device

– Supports migration of/to different devices

– Causes minimal performance overhead
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Outline

• Introduction

• Architecture

• Implementation

• Evaluation

• Conclusions
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Architecture

• Goals for Live Migration

– Low performance cost when not migrating

– Minimal downtime during migration

– No activity executing in guest pre-migration

• Our Solution

– Introduce agent in guest OS to manage migration

– Leverage shadow drivers as the agent [Swift OSDI04]
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Shadow Drivers

• Kernel agent that 

monitors the state of the 

driver

• Recovers from driver 

failures

• Driver independent

• One implementation per 

device type

Guest OS 
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Device 

Driver

Device
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Taps

Shadow Driver Operation

Guest OS 

Kernel

Shadow 

Driver

Device 

Driver

Device

• Normal Operation

- Intercept Calls

- Track shared objects

- Log state changing operations

• Recovery

- Proxy to kernel

- Release old objects

- Restart driver

- Replay log
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Shadow Drivers for Migration

• Pre Migration

– Record driver/device state in driver-independent 
way

– Shadow driver logs state changing operations

• configuration requests, outstanding packets

• Post Migration

– Unload old driver

– Start new driver

– Replay log to configure driver
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Shadow Drivers for Migration

• Transparency

– Taps route all I/O requests to the shadow driver

– Shadow driver can give an illusion that the device is up

• State Preservation

– Always store only the absolute current state

– No history of changes maintained

– Log size only dependent on current state of the driver
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Migration with shadow drivers
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Outline

• Introduction

• Overview

• Architecture

• Implementation

• Evaluation

• Conclusions
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Implementation

• Prototype Implementation

– VMM: Xen 3.2 hypervisor

– Guest VM based on linux-2.6.18.8-xen kernel

• New code: Shadow Driver implementation 

inside guest OS

• Changed code: Xen hypervisor to enable 

migration

• Unchanged code: Device drivers
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Changes to Xen Hypervisor

• Migration code modified to allow

– Allow migration of PCI devices

– Unmap I/O memory mapped at the   

source

– Detach virtual PCI bus just before VM 

suspension at source and reconnect  

virtual PCI bus at the destination

– Added ability to migrate between different 

devices
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Modifications to the Guest OS

• Ported shadow drivers to 2.6.18.8-xen kernel

– Taps

– Object tracker

– Log

• Implemented shadow driver for network 
devices

– Proxy by temporarily disabling device

– Log ioctl calls, multicast address

– Recovery code
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Outline

• Introduction

• Architecture

• Implementation

• Evaluation

• Conclusions
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Evaluation

1. Cost when not migrating

2. Latency of Migration
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Evaluation Platform

• Host machines

– 2.2GHz AMD machines

– 1 GB Memory

• Direct Access Devices

– Intel Pro/1000 gigabit Ethernet NIC

– NVIDIA MCP55 Pro gigabit NIC

• Tests

– Netperf on local network

– Migration with no applications inside VM

– Liveness tests from a third physical host
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Throughput
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Direct I/O is 33% better than virtual I/O.

Direct I/O with shadow throughput within 1% of original

CPU Utilization
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Direct I/O with shadow CPU utilization within 1% of original
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Migration Time
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Significant migration latency(56%) is in driver uptime.
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Conclusions

• Shadow Drivers used as an agent to perform 

live migration of VMs performing direct access

• Supports heterogeneous devices

• Requires no driver or hardware changes

• Minimal performance overhead and latency 

during migration

• Portable to other devices, OS and hypervisors
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Questions
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Contact : {kadav, swift} @cs.wisc.edu

More details: 

http://cs.wisc.edu/~swift/drivers/

http://cs.wisc.edu/~kadav/

Backup Slides
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Complexity of Implementation

• ~19000 LOCs

• Bulk of this (~70%) are wrappers around 

functions.

– Can be automatically generated by scripts
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Migration Time
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Total downtime  = 3.97 seconds

Significant migration latency(56%) is in driver uptime.
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Migration with shadow drivers
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