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Live Migration

Migrating VM across different hosts without
noticeable downtime

Uses of Live Migration

— Reducing energy consumption by hardware consolidation
— Perform non-disruptive hardware maintenance

Relies on hypervisor mediation to maintain
connections to 1/O devices

— Shared storage
— Virtual NICs
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Live Migration with virtual I/0
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Direct access to I/O Devices
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Live migration with Direct I/0O

* Why not both performance and migration?
— Hypervisor unaware of device state
— Heterogeneous devices/drivers at source and destination

* Existing Solutions :
— Detach device interface and perform migration [Xen 3.3]
— Detach device and divert traffic to virtual /O [zhai OLS 08]
— Modify driver and device [Varley (Intel) ISSO03 08]

Overview

* Problem
— Direct I/O provides native throughput
— Live migration with direct I/O is broken

* Solution
— Shadow drivers in guest OS capture device/driver state
— Transparently re-attach driver after migration

* Benefits
— Requires no modifications to the driver or the device
— Supports migration of/to different devices
— Causes minimal performance overhead
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Architecture

* Goals for Live Migration
— Low performance cost when not migrating
— Minimal downtime during migration
— No activity executing in guest pre-migration

* Qur Solution
— Introduce agent in guest OS to manage migration
— Leverage shadow drivers as the agent [swift 0sDI04]
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Shadow Drivers
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Shadow Driver Operation
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Shadow Drivers for Migration

* Pre Migration

— Record driver/device state in driver-independent
way

— Shadow driver logs state changing operations
* configuration requests, outstanding packets
* Post Migration
— Unload old driver
— Start new driver
— Replay log to configure driver
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Shadow Drivers for Migration

* Transparency
— Taps route all I/O requests to the shadow driver
— Shadow driver can give an illusion that the device is up

* State Preservation
— Always store only the absolute current state
— No history of changes maintained
— Log size only dependent on current state of the driver
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Migration with shadow drivers
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Implementation

* Prototype Implementation
— VMM: Xen 3.2 hypervisor
— Guest VM based on linux-2.6.18.8-xen kernel

* New code: Shadow Driver implementation
inside guest OS

* Changed code: Xen hypervisor to enable
migration

* Unchanged code: Device drivers
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Changes to Xen Hypervisor

* Migration code modified to allow

Guest

— Allow migration of PCl devices

— Unmap I/O memory mapped at the
source

— Detach virtual PCI bus just before VM
suspension at source and reconnect Hypervisor
virtual PCl bus at the destination

— Added ability to migrate between different
devices
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Modifications to the Guest OS

* Ported shadow drivers to 2.6.18.8-xen kernel
— Taps
— Object tracker
— Log
* Implemented shadow driver for network
devices
— Proxy by temporarily disabling device
— Log ioctl calls, multicast address
— Recovery code
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Evaluation

1. Cost when not migrating
2. Latency of Migration
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Evaluation Platform

* Host machines
— 2.2GHz AMD machines
— 1 GB Memory
* Direct Access Devices
— Intel Pro/1000 gigabit Ethernet NIC
— NVIDIA MCP55 Pro gigabit NIC
* Tests
— Netperf on local network
— Migration with no applications inside VM
— Liveness tests from a third physical host
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Migration Time
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Conclusions

Shadow Drivers used as an agent to perform
live migration of VMs performing direct access

Supports heterogeneous devices
Requires no driver or hardware changes

Minimal performance overhead and latency
during migration
Portable to other devices, OS and hypervisors
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Questions

Contact : {kadav, swift} @cs.wisc.edu
More details:

http://cs.wisc.edu/~swift/drivers/

http://cs.wisc.edu/~kadav/

Backup Slides
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Complexity of Implementation

* ~19000 LOCs

* Bulk of this (~70%) are wrappers around
functions.
— Can be automatically generated by scripts
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Migration Time
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Migration with shadow drivers
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