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Abstract
Device drivers are the single largest contributor to operating-system
kernel code with over 5 million lines of code in the Linux kernel,
and cause significant complexity, bugs and development costs. Re-
cent years have seen a flurry of research aimed at improving the re-
liability and simplifying the development of drivers. However, little
is known about what constitutes this huge body of code beyond the
small set of drivers used for research.

In this paper, we study the source code of Linux drivers to un-
derstand what drivers actually do, how current research applies to
them and what opportunities exist for future research. We deter-
mine whether assumptions made by driver research, such as that
all drivers belong to a class, are indeed true. We also analyze driver
code and abstractions to determine whether drivers can benefit from
code re-organization or hardware trends. We develop a set of static-
analysis tools to analyze driver code across various axes. Broadly,
our study looks at three aspects of driver code (i) what are the char-
acteristics of driver code functionality and how applicable is driver
research toall drivers, (ii) how do drivers interact with the kernel,
devices, and buses, and (iii) are there similarities that can be ab-
stracted into libraries to reduce driver size and complexity?

We find that many assumptions made by driver research do not
apply to all drivers. At least 44% of drivers have code that is not
captured by a class definition, 28% of drivers support more than
one device per driver, and 15% of drivers do significant computa-
tion over data. From the driver interactions study, we find that the
USB bus offers an efficient bus interface with significant standard-
ized code and coarse-grained access, ideal for executing drivers in
isolation. We also find that drivers for different buses and classes
have widely varying levels of device interaction, which indicates
that the cost of isolation will vary by class. Finally, from our driver
similarity study, we find 8% of all driver code is substantially sim-
ilar to code elsewhere and may be removed with new abstractions
or libraries.

Categories and Subject DescriptorsD.4.7 [Operating Systems]:
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1. Introduction
Modern computer systems are communicating with an increasing
number of devices, each of which requires a driver. For example, a
modern desktop PC may have tens of devices, including keyboard,
mouse, display, storage, and USB controllers. Device drivers con-
stitute 70% of the Linux code base [32], and likely are a greater
fraction of the code written for the Windows kernel, which sup-
ports many more devices. Several studies have shown that drivers
are the dominant cause of OS crashes in desktop PCs [14, 28]. As
a result, there has been a recent surge of interest in techniques to
tolerate faults in drivers [12, 38, 39, 47], to improve the quality of
driver code [20]; and in creating new driver architectures that im-
prove reliability and security [4, 15, 21, 23, 24, 31, 44].

However, most research on device drivers focuses on a small
subset of devices, typically a network card, sound card, and storage
device, all using the PCI bus. These are but a small subset of all
drivers, and results from these devices may not generalize to the
full set of drivers. For example, many devices for consumer PCs
are connected over USB. Similarly, the devices studied are fairly
mature and have standardized interfaces, but many other devices
may have significant functionality differences.

Thus, it is important to study all drivers to review how the driver
research solutions being developed are applicable to all classes of
drivers. In addition, a better understanding of driver code can lead
to new abstractions and interfaces that can reduce driver complexity
and improve reliability.

This paper presents a comprehensive study of all the drivers in
the Linux kernel in order to broadly characterize their code. We
focus on (i) what driver code does, including where driver develop-
ment work is concentrated, (ii) the interaction of driver code with
devices, buses, and the kernel, and (iii) new opportunities for ab-
stracting driver functionality into common libraries or subsystems.
We use two static analysis tools to analyze driver code. To under-
stand properties of driver code, we developed DrMiner, which per-
forms data-flow analyses to detect properties of drivers at the granu-
larity of functions. We also developed the DrComp tool, which uses
geometric shape analysis [3] to detect similar code across drivers.
DrComp maps code to points in coordinate space based on the
structure of individual driver functions, and similar functions are
at nearby coordinates.

The contributions of this paper are as follows:

• First, we analyze what driver code does in order to verify com-
mon assumptions about driver code made by driver research.
We show that while these assumptions hold for most drivers,
there are a significant number of drivers that violate these as-
sumptions. We also find that several rapidly growing driver
classes are not being addressed by driver research.

• Second, we study driverinteractionswith the kernel and de-
vices, to find how existing driver architecture can adapt to a
world of multicore processors, devices with high-power pro-
cessors and virtualized I/O. We find that drivers vary widely



by class, and that USB drivers are more efficient in supporting
multiple chipsets than PCI drivers. Furthermore, we find that
XenBus drivers may provide a path to executing drivers outside
the kernel and potentially on the device itself.

• Third, we study driver codecontentsto find opportunities to
reduce or simplify driver code. We develop new analysis tools
for detecting similar code structures and their types that detect
over 8% of Linux driver code is very similar to other driver
code, and offer insights on how this code can be reduced.

In the remainder of this paper, we first discuss device driver
background and develop a taxonomy of drivers. We then present the
three broad classes of results on driver behavior in Sections3 and
4. In Section5 we present results showing the extent of repeated
code in drivers. Section6 discusses our findings.

2. Background
A device driver is a software component that provides an interface
between the OS and a hardware device. The driver configures and
manages the device, and converts requests from the kernel into re-
quests to the hardware. Drivers rely on three interfaces: (i) the inter-
face between the driver and the kernel, for communicating requests
and accessing OS services; (ii) the interface between the driver and
the device, for executing operations; and (iii) the interface between
the driver and the bus, for managing communication with the de-
vice.

2.1 Driver/Device Taxonomy

The core operating system kernel interacts with device drivers
through a set of interfaces that abstract the fundamental nature of
the device. In Linux, the three categories of drivers arecharac-
ter drivers, which are byte-stream oriented;block drivers, which
support random-access to blocks; andnetworkdrivers, which sup-
port streams of packets. Below these top-level interfaces, support
libraries provide common interfaces for many other families of de-
vices, such as keyboards and mice within character drivers.

In order to understand the kinds of drivers Linux supports, we
begin by taxonomizing drivers according to their interfaces. We
consider a single driver as a module of code that can be com-
piled independently of other code. Hence, a single driver can span
multiple files. We consider all device drivers, bus drivers and
virtual drivers that constitute the driver directories (/sound and
/drivers ) in the Linux 2.6.37.6 kernel, dated April, 2011. We
perform our analyses on all drivers that compile on the x86 plat-
form, using the kernel build option to compile all drivers. Overall,
we consider 3,217 distinct drivers. While there are a significant
number of Linux drivers that are distributed separately from the
kernel, we do not consider them for this work.

We detect the class of a driver not by the location of its code,
but by the interfaces it registers:e.g., register netdev indicates
a driver is a network device. We further classify the classes into
sub-categories to understand the range of actual device types sup-
ported by them through manual classification, using the device op-
erations they register, the device behavior and their location. While
Linux organizes related drivers in directories, this taxonomy is
not the same as the Linux directory organization: network drivers
are split underdrivers/net, drivers/atmand other directories. How-
ever, block drivers are split by their interfaces underdrivers/scsi,
drivers/ideand other directories

Figure1 shows the hierarchy of drivers in Linux according to
their interfaces, starting from basic driver types i.e. char, block and
net. We identify 72 unique classes of drivers. The majority (52%)
of driver code is in character drivers, spread across 41 classes.
Network drivers account 25% of driver code, but have only 6
classes. In contrast to the rich diversity of Figure1, Table1 lists the
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Figure 1. The Linux driver taxonomy in terms of basic driver classes.
The size (in percentage of lines of code) is mentioned for 5 biggest
classes. Not all driver classes are mentioned.

driver types used in research. Most driver research (static-analysis
tools excepted) neglects the heavy tail of character devices. For
example, video and GPU drivers contribute significantly towards
driver code (almost 9%) due to complex devices with instruction
sets that change each generation, but these devices are largely
ignored by driver research due to their complexity.

We also looked at low-level buses, which provide connectivity
to devices and discover the devices attached to a system. The
majority of devices are either PCI (36% of all device identifiers) or
USB (35%), while other buses support far fewer: I2C represents 4%
of devices, PCMCIA is 3% and HID is 2.5% (mostly USB devices).
The remaining devices were supported by less popular or legacy
buses such as ISA or platform devices. We also found that 8% of
devices perform low-level I/O without using a bus, interconnect, or
support virtual devices. Higher-level protocols such as SCSI (8.5%)
and IDE (2%) use one of these underlying low-level buses such as
PCI and USB. While PCI drivers still constitute the greatest fraction
of drivers, the number of devices supported by USB is similar to
PCI. Hence, driver research should validate their performance and
reliability claims on USB devices as well.

2.2 Driver Research Assumptions

Most research makes some simplifying assumptions about the
problem being solved, and driver research is no different. For ex-
ample, Shadow Drivers [38] assume that all drivers are members
of a class and there are no unique interfaces to a driver. Similarly,
the Termite driver-synthesis system assumes that drivers are state
machines and perform no computations [33]. Table2 lists the as-
sumptions made by recent research into device drivers.

We separate these assumptions into two categories: (i)inter-
actionsrefers to assumptions about how drivers interact with the
kernel, and (ii)architecturerefers assumptions about the role of
the driver: is it a conduit for data, or does it provide more sub-
stantial processing or services? Interaction assumptions relate to
how the kernel and driver interact. For example, systems that in-
terpose on driver/device communication, such as Nooks [39], typ-
ically assume that communication occurs over procedure calls and
not shared memory. Nooks’ isolation mechanism will not work oth-
erwise. Similarly, Shadow Drivers assume that the complete state
of the device is available in the driver by capturing kernel/driver in-



Improvement
type

System Driver classes tested Drivers
tested

New
functionality

Shadow driver
migration [19]

net 1

RevNIC [6] net 4

Reliability
(H/W
Protection)

CuriOS [9] serial port, NOR flash 2
Nooks [39] net, sound 6
Palladium [7] custom packet filter 1
Xen [12] net, sound 2

Reliability
(Isolation)

BGI [5] net, sound, serial,
ramdisk, libs

16

Shadow
Drivers [38]

net, sound, IDE 13

XFI [40] ram disk, dummy 2

Specification

Devil [25] scsi, video 2
Dingo [32] net 2
Laddie [45] net, UART, rtc 3
Nexus [44] net, sound, USB-mouse,

USB-storage
4

Termite [33] net, mmc 2

Static analysis
tools

Carburizer [18] All/net All/3
Cocinelle [29] Various All
SDV [2] basic ports, storage,

USB, 1394-interface,
126

mouse, keyboard, PCI
battery

Type safety
Decaf
Drivers [31]

net, sound, USB con-
troller, mouse

5

Safedrive [47] net, USB, sound, video 6
Singularity [37] Disk 1

User-level
device drivers

Micro-
drivers [15]

net, sound, USB con-
troller

4

SUD [4] net, wireless, sound,
USB controllers, USB

6/1

User-level
drivers [21]

net, disk (ata) 2

Table 1. Research projects on drivers, the improvement type, and the
number and class of drivers used to support the claim end to end. Few
projects test all driver interfaces thoroughly. Static analysis tools that
do not require driver modifications are available to check many more
drivers. Also, some solutions, like Carburizer [18], and SUD [4] support
the performance claims on fewer drivers.

Driver interactions
Class membership:Drivers belong to common set of classes, and the
class completely determines their behavior.
Procedure calls:Drivers always communicate with the kernel through
procedure calls.
Driver state:The state of the device is completely captured by the

driver.
Device state:Drivers may assume that devices are in the correct state.
Driver architecture
I/O: Driver code functionality is only dedicated to converting requests
from the kernel to the device.
Chipsets:Drivers typically support one or a few device chipsets.
CPU Bound:Drivers do little processing and mostly act as a library

for binding different interfaces together.
Event-driven:Drivers execute only in response to kernel and device

requests, and to not have their own threads.

Table 2. Common assumptions made in device driver research.

teractions [38]. However, network cards that do TCP-offload may
have significant protocol state that is only available in the device,
and cannot be captured by monitoring the kernel/driver interface.

Several recent projects assume that drivers support a single
chipset, such as efforts at synthesizing drivers from a formal
specification [33]. However, many drivers support more than one

chipset. Hence, synthesizing the replacement for a single driver
may require many more drivers. Similarly, enforcing safety proper-
ties for specific devices [44] may be cumbersome if many chipsets
must be supported for each driver. Other efforts at reverse engi-
neering drivers [6] similarly may be complicated by the support
of many chipsets with different hardware interfaces. Furthermore,
these synthesis and verification systems assume that devices al-
ways behave correctly, and their drivers may fail unpredictably
with faulty hardware.

Another assumption made by driver research is that drivers are
largely a conduit for communicating data and for signaling the
device, and that they perform little processing. Neither RevNIC [6])
nor Termite [33] support data processing with the driver, because it
is too complex to model as a simple state machine.

While these assumptions all hold true for many drivers, this re-
search seeks to quantify their real generality. If these assumptions
are true for all drivers, then these research ideas have broad appli-
cability. If not, then new research is needed to address the outliers.

3. What Do Drivers Do?
Device drivers are commonly assumed to primarily perform I/O. A
standard undergraduate OS textbook states:

“A device driver can be thought of a translator. Its input consists
of high-level commands such as “retrieve block 123.” Its output
consists of low-level, hardware-specific instructions that are used
by the hardware controller, which interfaces the I/O device to the
rest of the system.”

Operating Systems Concepts[36]

However, this passage describes the functions of only the small por-
tion of driver code that which actually performs I/O. Past work re-
vealed that the bulk of driver code is dedicated to initialization and
configuration for a sample of network, SCSI and sound drivers [15].

We seek to develop a comprehensive understanding of what
driver code does: what are the tasks drivers perform, what are the
interfaces they use, and how much code does this all take. The goal
of this study is to verify the driver assumptions described in the
previous section, and to identify major driver functions that could
benefit from additional research.

3.1 Methodology

To study the driver code, we developed theDrMiner static anal-
ysis tool using CIL [27] to detect code properties in individual
drivers. DrMiner takes as input unmodified drivers and a list of
driver data-structure types and driver entry points. As drivers only
execute when invoked from the kernel, these entry points allow us
to determine the purpose of particular driver functions. For exam-
ple, we find the different devices and chipsets supported by ana-
lyzing thedevice id structures registered (e.g., pci device id ,
acpi device id etc.) with the kernel. We also identify the driver
entry points from the driver structure registered (e.g., pci driver ,
pnp device ) and the device operations structure registered (e.g.,
net device ). DrMiner analyzes the function pointers registered
by the driver to determine the functionality of each driver. We then
construct a control-flow graph of the driver that allows us to deter-
mine all the functions reachable through each entry point, including
through function pointers.

We use atagging approach to labeling driver code: DrMiner
tags a function with the label of each entry point from which it is
reachable. Thus, a function called only during initialization will be
labeled initialization only, while code common to initialization and
shutdown will receive both labels. In addition, DrMiner identifies
specific code features, such as loops indicating computation.
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Figure 2. The percentage of driver code accessed during different
driver activities across driver classes.

We run these analyses over the entire Linux driver source and
store the output in a SQL database. The database stores informa-
tion about each driver as well as each function in the driver. The
information about the driver consists of name, path, size, class,
number of chipsets, module parameters, and interfaces registered
with the kernel. The information about each driver function consists
of function name, size, labels, resources allocated (memory, locks
etc.), and how it interacts with the kernel and the device. From the
database, determining the amount of code dedicated to any func-
tion is a simple query. In our results, we present data for about 25
classes with the most code.

3.2 What is the function breakdown of driver code?

Drivers vary widely in how much code they use for different pur-
poses; a simple driver for a single chipset may devote most of its
code to processing I/O requests and have a simple initialization rou-
tine. In contrast, a complex driver supporting dozens of chipsets
may have more code devoted to initialization and error handling
than to request handling.

Figure 2 shows the breakdown of driver code across driver
classes. The figure shows the fraction of driver code invoked during
driver initialization, cleanup, ioctl processing, configuration, power
management, error handling,/proc and/sys handling, and most
importantly, core I/O request handling (e.g., sending packet for
network devices, or playing audio for sound card) and interrupt
handling across different driver classes.

The largest contributors to driver code are initialization and
cleanup, comprising almost 36% of driver code on average, error
handling (5%), configuration (15%), power management (7.4%)

2.6.0 2.6.10 2.6.13.5 2.6.18.6 2.6.23.12 2.6.27.10 2.6.32 2.6.36 2.6.39

0

50

100

150

200

250

300

350

400

O
O O O

O
O

O

O
O

Linux kernel trees every December (2003-2010) and May 2011

%
gr

ow
th

in
li
n
es

of
co

d
e

fr
om

2.
6.

0
b
as

el
in

e

ethernet&wireless scsi video gpu media sound O overall

1

Figure 3. The change in driver code in terms of LOC across different
driver classes between the Linux 2.6.0 and Linux 2.6.39 kernel.

and ioctl handling (6.2%). On average, only 23.3% of the code in a
driver is dedicated to request handling and interrupts.

Implications: These results indicate that efforts at reducing the
complexity of drivers should not only focus on request handling,
which accounts for only one fourth of the total code, but on bet-
ter mechanisms for initialization and configuration. For example,
as devices become increasingly virtualization aware, quick ways to
initialize or reset are critical for important virtualization features
such as re-assignment of devices and live migration [19]. Drivers
contain significant configuration code (15%), specifically in net-
work (31%) and video (27%) drivers. As devices continue to be-
come more complex, driver and OS research should look at efficient
and organized ways of managing device configuration [35].

3.3 Where is the driver code changing?

Over time, the focus of driver development shifts as new device
classes become popular. We compared the breakdown of driver
code between the 2.6.0 and 2.6.39 for new source lines of code
added annually to different driver classes. We obtain the source
lines of code across different classes in 9 intermediate revisions
(every December since 2.6.0) using sloccount [43].

Figure 3 shows the growth in driver across successive years
from the 2.6.0 baseline for 8 major driver classes. Overall, driver
code has increased by 185% over the last eight years. We iden-
tify three specific trends in this growth. First, there is additional
code for new hardware. This code includes wimax, GPU, media,
input devices and virtualization drivers. Second, there is increasing
support for certain class of devices, including network (driven by
wireless), media, GPU and SCSI. From 2.6.13 to 2.6.18, the devices
supported by a vendor (QLogic) increased significantly. Since, they
were very large multi-file SCSI drivers, the drivers where coalesced
to a single driver, reducing the size of SCSI drivers in the driver
tree. In Section5, we investigate whether there are opportunities
to reduce driver code in the existing code base. Third, there is minor
code refactoring. For example, periodically, driver code is moved
away from the driver or bus library code into the respective classes
where they belong. For example, drivers from the i2c bus directory
were moved to misc directory.

Implications: While Ethernet and sound, the common driver
classes for research, are important, research should look further
into other rapidly changing drivers, such as media, GPU and wire-
less drivers.



drivers/ide/ide-cd.c:
static int cdrom_read_tocentry(...) {

// Read table of contents data
for (i = 0; i <= ntracks; i++) {

if (drive->atapi_flags &
IDE_AFLAG_TOCADDR_AS_BCD) {

if (drive->atapi_flags &
IDE_AFLAG_TOCTRACKS_AS_BCD)

toc->ent[i].track =
bcd2bin(toc->ent[i].track);

msf_from_bcd(&toc->ent[i].addr.msf);}
toc->ent[i].addr.lba =

msf_to_lba(toc->ent[i].addr.msf.minute,
toc->ent[i].addr.msf.second,
toc->ent[i].addr.msf.frame);

}
}

Figure 4. The IDE CD-ROM driver processes table-of-contents en-
tries into a native format.

3.4 Do drivers belong to classes?

Many driver research projects assume that drivers belong to a class.
For example, Shadow Drivers [38] must be coded with the seman-
tics of all calls into the driver so it can replay them during recovery.
However, many drivers support proprietary extensions to the class
interface. In Linux drivers, these manifest as privateioctl options,
/proc or /sys entries, and as load-time parameters. If a driver has
one of these features, it may have additional behaviors not captured
by the class.

We use DrMiner to identify drivers that have behavior outside
the class by looking for load-time parameters and code to register
/proc or /sys entries. We do not identify uniqueioctl options.
Overall, we find that most driver classes have substantial amounts
of device-specific functionality. Code supporting/proc and/sys
is present in 16.3% of drivers. Also, 36% of drivers have load-
time parameters to control their behavior and configure options not
available through the class interface. Overall, 44% of drivers use
atleast one of the two non-class features. Additionally,ioctl code
comprises 6.2% of driver code, can also cause non-class behavior.

As an example of how these class extensions are used, the
e1000 gigabit network driver has 15 load-time parameters that al-
low control over interrupt processing and transmit/receive ring siz-
ing, and interrupt throttling rate. This feature is not part of any
standard network device interface and is instead specific to this de-
vice. Similarly, the i915 DRM GPU driver supports load parameters
for down-clocking the GPU, altering graphic responsibilities from
X.org to the kernel, and power saving. These parameters change the
code path of the driver during initialization as well as during regular
driver operations. While the introduction of these parameters does
not affect the isolation properties of the reliability solutions, as the
interfaces for setting and retrieving these options are standard, it
limits the ability to restart and restore the driver to a previous state
since the semantics of these options are not standardized.

Implications: While most driver functionality falls into the class
behavior, many drivers have significant extensions that do not.
Attempts to recover driver state based solely on the class inter-
face [38] or to synthesize drivers from common descriptions of
the class [6, 33] may not work for a substantial number of drivers.
Thus, future research should explicitly consider how to accommo-
date unique behaviors efficiently.

3.5 Do drivers do significant processing?

As devices become more powerful and feature processors of their
own, it is often assumed that drivers perform little processing and
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Figure 5. The average number of chipsets supported by drivers in
each class.

simply shuttle data between the OS and the device. However, if
drivers require substantial CPU processing, for example to com-
pute parity for RAID, checksums for networking, or display data
for video drivers, then processing power must be reserved. Further-
more, in a virtualized setting, heavy I/O from one guest VM could
substantially reduce CPU availability for other guest VMs.

DrMiner detects processing in drivers by looking for loops that
(i) do no I/O, (ii) do not interact with the kernel, and (iii) are on core
data paths, such as sending/receiving packets or reading/writing
data. This ensures that polling loops, common in many drivers, are
not identified as performing processing.

We find that 15% of drivers have at least one function that
performs processing, and that processing occurs in 1% of all driver
functions. An even higher fraction (28%) of sound and network
drivers do processing. Wireless drivers, such as ATH, perform
processing to interpolate power levels of the device under different
frequencies and other conditions. Many network drivers provide the
option of computing checksums on the outgoing/incoming packets.
Finally, even CD-ROM drivers, which largely read data off the
device, do computation to analyze the table of content information
for CD-ROMs, as shown in Figure4.

Implications: A substantial fraction of drivers do some form of
data processing. Thus, efforts to generate driver code automatically
must include mechanisms for data processing, not just converting
requests from the OS into requests to the device. Furthermore, vir-
tualized systems should account for the CPU time spent processing
data when this processing is performed on behalf of a guest VM.
These results also point to new opportunities for driver and device
design: given the low cost of embedded processors, can all the com-
putation be offloaded to the device, and is there a performance or
power benefit to doing so?

3.6 How many device chipsets does a single driver support?

Several driver research projects require or generate code for a spe-
cific device chipset. For example, Nexus requires a safety specifi-
cation that is unique to each device interface [44]. If a driver sup-
ports only a single device, this requirement may not impose much
burden. However, if a driver supports many devices, each with a
different interface or behavior, then many specifications are needed
to fully protect a driver.

We measure the number of chipsets or hardware packagings
supported by each Linux driver by counting the number of PCI,
USB or other bus device IDs (i.e., i2c, ieee1394) that the driver
recognizes. These structures are used across buses to identify (and
match) different devices or packagings that are supported by the



static int __devinit cy_pci_probe(...)
{

if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo) {
...

if (pci_resource_flags(pdev,2)&IORESOURCE_IO){
..

if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo ||
device_id == PCI_DEVICE_ID_CYCLOM_Y_Hi) {

..
}else if (device_id==PCI_DEVICE_ID_CYCLOM_Z_Hi)

....
if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo ||

device_id == PCI_DEVICE_ID_CYCLOM_Y_Hi) {
switch (plx_ver) {

case PLX_9050:
...

default: / * Old boards, use PLX_9060 * /
...

}

Figure 6. The cyclades character drivers supports eight chipsets that
behaves differently at each phase of execution. This makes driver code
space efficient but extremely complex to understand.

driver. Figure5 shows the average number of chipsets supported
by each driver in each driver class. While most drivers support only
a few different devices, serial drivers support almost 36 chipsets on
average, and network drivers average 5. The Radeon DRM driver
supports over 400 chipsets, although many of these may indicate
different packagings of the same internal chipset. Generic USB
drivers such as usb-storage and usb-audio support over 200 chipsets
each, and the usb-serial driver supports more than 500 chipsets.
While not every chipset requires different treatment by the driver,
many do. For example, the3c59x 100-megabit Ethernet driver sup-
ports 37 chipsets, 17 sets of features that vary between chipsets, and
two complete implementations of the core send/receive functional-
ity. Overall, we find that 28% of drivers support more than one
chipset and these drivers support 83% of the total devices.

In order to measure the effects of number of chipsets on driver
code size, we measured the least-square correlation coefficient be-
tween the number of chipsets support by a driver and the amount of
code in the driver and found them to be weakly correlated (0.25),
indicating that drivers supporting more chipsets were on average
larger than those that did not. However, this does not completely
explain the amount of initialization code, as the correlation between
the number of chipsets and the percentage of initialization code was
0.07, indicating that the additional chipsets increased the amount of
code throughout the driver.

Implications: These results indicate that Linux drivers support
multiple chipsets per driver and are relatively efficient, supporting
14,070 devices with 3,217 device and bus drivers, for an average of
approximately 400 lines of code per device. Any system that gener-
ates unique drivers for every chipset or requires per-chipset manual
specification may lead to a great expansion in driver code and com-
plexity. Furthermore, there is substantial complexity in support-
ing multiple chipsets, as seen in Figure6, so better programming
methodologies, such as object-oriented programming [31] and au-
tomatic interface generation, similar to Devil [25], should be inves-
tigated.

3.7 Discussion

The results in this section indicate that while common assumptions
about drivers are generally true, given the wide diversity of drivers,
one cannot assume they always hold. Specifically, many drivers
contain substantial amounts of code that make some of the existing
research such as automatic generation of drivers difficult, due to
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Figure 7. The average kernel library, memory, synchronization, ker-
nel device library, and kernel services library calls per driver (bottom
to top in figure) for all entry points.

code unique to that driver and not part of the class, code that
processes data, and code for many chip sets.

4. Driver Interactions
The preceding section focused on thefunctionof driver code, and
here we turn to theinteractionsof driver code: how do drivers
use the kernel, and how do drivers communicate with devices? We
see three reasons to study these interactions. First, extra process-
ing power on devices or extra cores on the host CPU provide an
opportunity to redesign the driver architecture for improved relia-
bility and performance. For example, it may be possible to move
many driver functions out of the kernel and onto the device itself.
Or, in virtualized systems, driver functionality may execute on a
different core in a different virtual machine. Second, much of the
difficulty in moving drivers between operating systems comes from
the driver/kernel interface, so investigating what drivers request of
the kernel can aid in designing more portable drivers. Third, the
cost of isolation and reliability are proportional to the size of the
interface and the frequency of interactions, so understanding the
interface can lead to more efficient fault-tolerance mechanisms.

We examine the patterns of interaction between the driver, the
kernel and the device, with a focus on (i) which kernel resources
drivers consume, (ii) how and when drivers interact with devices,
(iii) the differences in driver structure across different I/O buses,
and (iv) the threading/synchronization model used by driver code.

4.1 Methodology

We apply the DrMiner tool from Section3 to perform this analysis.
However, rather than propagating labels down the call graph from
entry points to leaf functions, here we start at the bottom with ker-
nel and device interactions. Using a list of known kernel functions,
bus functions, and I/O functions, we label driver functions accord-
ing to the services or I/O they invoke. Additionally, we compute
the number of invocations of bus, device and kernel invocations
for each function in a driver. These call counts are also propagated
to determine how many such static calls could be invoked when a
particular driver entry point is invoked.



4.2 Driver/Kernel Interaction

Drivers vary widely in how they use kernel resources, such as
memory, locks, and timers. Here, we investigate how drivers use
these resources. We classify all kernel functions into one of five
categories:

1. Kernel library (e.g., generic support routines such as reporting
functions,1 timers, string manipulation, checksums, standard
data structures)

2. Memory management (e.g., allocation)

3. Synchronization (e.g., locks)

4. Device library (e.g., subsystem libraries supporting a class of
device and other I/O related functions)

5. Kernel services (e.g., access to other subsystems including files,
memory, scheduling)

The first three are generic library routines that have little interaction
with other kernel services, and could be re-implemented in other
execution contexts. The fourth category, device library, provides
I/O routines supporting the driver but does not rely other kernel
services, and is very OS dependent. The final category provides
access to other kernel subsystems, and is also OS dependent.

Figure7 shows, for each class of drivers, the total number of
function calls made by drivers in every class. The results demon-
strate several interesting features of drivers. First, the majority of
kernel invocations are for kernel library routines, memory manage-
ment and synchronization. These functions are primarilylocal to
a driver, in that they do not require interaction with other kernel
services. Thus, a driver executing in a separate execution context,
such as in user mode or a separate virtual machine, need not call
into the kernel for these services. There are very few calls into ker-
nel services, as drivers rarely interact with the rest of the kernel.

The number of calls into device-library code varies widely
across different classes and illustrates the abstraction level of
the devices: those with richer library support, such as network
and SCSI drivers, have a substantial number of calls into device
libraries, while drivers with less library support, such as GPU
drivers, primarily invoke more generic kernel routines.

Finally, a number of drivers make very little use of kernel ser-
vices, such as ATA, IDE, ACPI, and UWB drivers. This approach
demonstrates another method for abstracting driver functionality
when there is little variation across drivers: rather than having a
driver that invokes support library routines, these drivers are them-
selves a small set of device-specific routines called from a much
larger common driver. This design is termed a “miniport” driver in
Windows. Thus, these drivers benefit from a common implementa-
tion of most driver functionality, and only the code differences are
implemented in the device-specific code. These drivers are often
quite small and have little code that is not device specific.

These results demonstrate a variety of interaction styles between
drivers and the kernel: drivers with little supporting infrastructure
demonstrate frequent interactions with the kernel for access to
kernel services but few calls to device support code. Drivers with a
high level of abstraction demonstrate few calls to the kernel over
all. Drivers with a support library demonstrate frequent calls to
kernel generic routines as well as calls to device support routines.

Implications: Drivers with few calls into device libraries may
have low levels of abstraction, and thus are candidates for extract-
ing common functionality. Similarly, drivers with many kernel in-
teractions and device library interaction may benefit from convert-
ing to a layered on “miniport” architecture, where more driver func-
tionality is extracted into a common library.

1 We leave outprintk to avoid skewing the numbers from calls to it.
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Figure 8. The device interaction pattern representing port I/O, mem-
ory mapped I/O, bus resources (bottom to top) invoked via all driver
entry points.

Furthermore, a large fraction of driver/kernel interactions are
for generic routines (memory, synchronization, libraries) that do
not involve other kernel services. Thus, they could be implemented
by a runtime environment local to the driver. For example, a driver
executing in a separate virtual machine or on the device itself can
make use of its local OS for these routines, and drivers in user space
can similarly invoke user-space versions of these routines, such as
the UML environment in SUD [4].

4.3 Driver/Device Interaction

We next look at interaction between the driver and the device. We
analyzed all functions in all drivers, and if a function does I/O it-
self, or calls a function that results in an I/O, we label it asperform
I/O. We categorize driver/device interactions around the type of in-
teraction: access to memory-mapped I/O (MMIO) regions or x86
I/O ports (port IO) are labeledmmio/portio, DMA is DMA access,
either initiated by the driver or enabled by the driver creating a
DMA mapping for a memory region, and calls to a bus, such as
USB or PCI (bus). We could not determine statically when a de-
vice initiates DMA, although we do count calls to map a page for
future DMA (e.g., pci map single ) as a DMA action. Our analy-
sis can detect memory mapped I/O through accessor routines such
asread/writeX family, ioread/iowrite family of routines and
port I/O using thein/outX family. DrMiner cannot identify di-
rect dereferences of pointers into memory-mapped address ranges.
However, direct dereference of I/O addresses is strongly discour-
aged and most non-conforming drivers have been converted to use
accessor routines instead. We also note that all I/O routines on x86
eventually map down to either port or MMIO. Here, though, we
focus on the I/O abstractions used by the driver.

Figure8 shows, for each class of device, the number of device
interactions in the entire driver. The results demonstrate that driver
classes vary widely in their use of different I/O mechanisms. IDE
and ATA drivers, both block devices, show very different patterns
of interaction: IDE drivers do very little port or MMIO, because
they rely on the PCI configuration space for accessing device reg-
isters. Hence, they show a greater proportion of bus operations.
Additionally, virtual device classes such as md (RAID), do page-
level writes by calling the block subsystem through routines like
submit bio rather than by accessing a device directly.



Kernel Interactions Device Interactions
BUS mem sync dev lib. kern lib. kern services port/mmio dma bus avg devices/driver

PCI 15.6 57.8 13.3 43.2 9.1 125.1 7.0 21.6 7.5
USB 9.6 25.5 5.6 9.9 3.0 0.0 2.22 13.8 13.2
Xen 10.3 8.0 7.0 6.0 2.75 0.0 0.0 34.0 1/All

Table 3. Comparison of modern buses on drivers across all classes. Xen and USB drivers invoke the bus for the driver while PCI drivers invoke the
device directly.

Second, these results demonstrate that the cost of isolating
drivers can vary widely based on their interaction style. Direct in-
teractions, such as through ports or MMIO, can use hardware pro-
tection, such as virtual memory. Thus, an isolated driver can be al-
lowed to access the device directly. In contrast, calls to set up DMA
or use bus routines rely on software isolation, and need to cross
protection domains. Thus, drivers using higher-level buses, like
USB, can be less efficient to isolate, as they can incur a protection-
domain transition to access the device. However, as we show in the
next section, access devices through a bus can often result in far
fewer operations.

Implications: The number and type of device interactions vary
widely across devices. Thus, the cost of isolating drivers, or veri-
fying that their I/O requests are correct (as in Nexus [44]) can vary
widely across drivers. Thus, any system that interposes or protects
the driver/device interaction must consider the variety of interaction
styles. Similarly, symbolic execution frameworks for drivers [20]
must generate appropriate symbolic data for each interaction style.

4.4 Driver/Bus Interaction

The plurality of drivers in Linux are for devices that attach to some
kind of PCI bus (e.g., PCIe or PCI-X). However, several other
buses are in common use: the USB bus for removable devices and
XenBus for virtual devices [46]. Architecturally, USB and Xen
drivers appear to have advantages, as they interact with devices
over a message-passing interface. With USB 3.0 supporting speeds
up to 5 Gbps [42] and Xen supporting 10 Gbps networks [30], it is
possible that more devices will be accessed via USB or XenBus.

In this section, we study the structural properties of drivers for
different buses to identify specific differences between the buses.
We also look for indications that drivers for a bus may have better
architectural characteristics, such as efficiency or support for isola-
tion. We focus on two questions: (i) does the bus support a variety
of devices efficiently, (ii) will it support new software architectures
that move driver functionality out of the kernel onto a device or into
a separate virtual machine? Higher efficiency of a bus interface re-
sults from supporting greater number of devices with standardized
code. Greater isolation results from having less device/driver spe-
cific code in the kernel. If a bus only executes standardized code
in the kernel, then it would be easier to isolate drivers away from
kernel, and execute them inside a separate virtual machine or on
the device itself such as on an embedded processor.

Table3 compares complexity metrics across all device classes
for PCI, USB, and XenBus. First, we look at the efficiency of sup-
porting multiple devices by comparing the number of chipsets sup-
porting by a driver. This indicates the complexity of supporting a
new device, and the level of abstraction of drivers. A driver that sup-
ports many chipsets from different vendors indicates a standardized
interface with a high level of common functionality. In contrast,
drivers that support a single chipset indicate less efficiency, as each
device requires a separate driver.

The efficiency of drivers varied widely across the three buses.
PCI drivers support 7.5 chipsets per driver, almost always from the

2 USB drivers invoke DMA via the bus.

same vendor. In contrast, USB drivers average 13.2, often from
many vendors. A large part of the difference is the effort at stan-
dardization of USB protocols, which does not exist for many PCI
devices. For example, USB storage devices implement a standard
interface [41]. Thus, the main USB storage driver code is largely
common, but includes call-outs to device-specific code. This code
includes device-specific initialization, suspend/resume (not pro-
vided by USB-storage and left as an additional feature requirement)
and other routines that require device-specific code. While there are
greater standardization efforts for USB drivers, it is still not com-
plete

Unlike PCI and USB drivers, XenBus drivers do not access de-
vices directly, but communicate with a back-end driver executing
in a separate virtual machine that uses normal Linux kernel inter-
faces to talk to any driver in the class. Thus, a single XenBus driver
logically supportsall drivers in the class. in a separate domain so
we report them as a single chipset. However, device-specific behav-
ior, described above in Section3.4, is not available over XenBus;
these features must be accessed from the domain hosting the real
driver. XenBus forms an interesting basis for comparison because
it provides the minimum functionality to support a class of devices,
with none of the details specific to the device. Thus, it represents a
“best-case” driver.

We investigate the ability of a bus to support new driver archi-
tectures through its interaction with the kernel and device. A driver
with few kernel interactions may run more easily in other execu-
tion environments, such as on the device itself. Similarly, a driver
with few device or bus interactions may support accessing devices
over other communication channels, such as network attached de-
vices [26]. We find that PCI drivers interact heavily with the kernel
unless kernel resources are provided by an additional higher-level
virtual bus (e.g., ATA). In contrast, Xen drivers have little kernel
interaction, averaging only 34 call sites compared to 139 for PCI
drivers. A large portion of the difference is that Xen drivers need
little initialization or error handling, so they primarily consist of
core I/O request handling.

The driver/device interactions also vary widely across buses:
due to the fine granularity offered by PCI (individual bytes of
memory), PCI drivers average more device interactions (154) than
USB or XenBus devices (14-34). Thus, USB drivers are more
economical in their interactions, as they batch many operations into
a single request packet. XenBus drivers are even more economical,
as they need fewer bus requests during initialization and as many
operations as USB for I/O requests. Thus, USB and XenBus drivers
may efficiently support architectures that access drivers over a
network, because access is less frequent and coarse grained.

Implications: These results demonstrate that the flexibility and
performance of PCI devices comes with a cost: increased driver
complexity, and less interface standardization. Thus, for devices
that can live within the performance limitations of USB or in a vir-
tualized environment for XenBus, these buses offer real architec-
tural advantages to the drivers. With USB, significant standardiza-
tion enables less unique code per device, and coarse-grained access
allows efficient remote access to devices [1, 10, 17].



XenBus drivers push standardization further by removingall
device-specific code from the driver and executing it elsewhere.
For example, it may be possible to use XenBus drivers to access
a driver running on the device itself rather than in a separate virtual
machine; this could in effect remove many drivers from the kernel
and host processor.

The mechanism for supporting non-standard functionality also
differs across these buses: for PCI, a vendor may write a new
driver for the device to expose its unique features. For USB, a
vendor can add functionality to the existing common drivers just
for the features. For XenBus, the features must be accessed from
the domain executing the driver and are not available to a guest OS.

4.5 Driver Concurrency

Another key requirement of drivers in all modern operating sys-
tems is the need to multiplex access to the device. For example, a
disk controller driver must allow multiple applications to read and
write data at the same time, even if these applications are not oth-
erwise related. This requirement can complicate driver design, as
it increases the need for synchronization among multiple indepen-
dent threads. We investigate how drivers multiplex access across
long-latency operations: do they tend towards threaded code, sav-
ing state on the stack and blocking for events, or toward event-
driven code, registering callbacks either as completion routines for
USB drivers or interrupt handlers and timers for PCI devices. If
drivers are moved outside the kernel, the driver and kernel will
communicate with each other using a communication channel and
supporting event-driven concurrency may be more natural.

We determine that a driver entry point requires a threaded pro-
gramming style if it makes blocking calls into the kernel, or busy-
waits for a device response usingmsleep() which enables block-
ing. All other entry points are considered “event friendly”, in that
they do not suspend the calling thread. We did not detect specific
routines that use event-based synchronization, as they often rely
on the device to generate the callback via an interrupt rather than
explicitly registering with the kernel for a callback .

The results, shown in Figure9 in the bars labeledevent friendly
and threaded, show that the split of threaded and event-friendly
code varies widely across driver classes. Overall, drivers exten-
sively use both methods of synchronization for different purposes.
Drivers use threaded primitives to synchronize driver and device
operations while initializing the driver, and updating driver global
data structures, while event-friendly code is used for core I/O re-
quests. Interestingly, network drivers and block drivers, which are
not invoked directly by user-level code, have a similar split of
code to sound drivers, which are invoked directly from application
threads. This arises because of the function of most driver code, as
reported in Section3.2: initialization and configuration. This code
executes on threads, often blocking for long-latency initialization
operations such as device self-test.

Implications: Threaded code is difficult to run outside the ker-
nel, where the invoking thread is not available. For example, Mi-
crodrivers [16] executes all driver code in an event-like fashion, re-
stricting invocation to a single request at a time. Converting drivers
from threads to use event-based synchronization internally would
simplify such code. Furthermore, events are a more natural fit when
executing driver code either in separate virtual machine or on a de-
vice itself, as they naturally map to a stream of requests arising over
a communication channel [34].

5. Driver Redundancy
Given that all the drivers for a class perform essentially the same
task, one may ask why so much code is needed. In some cases,
such as IDE devices, related devices share most of the code with
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Figure 9. The percentage of driver entry points under coverage of
threaded and event friendly synchronization primitives.

DrComp signature: 1.798865
static int hpt374_fn1_cable_detect(....)
{

struct pci_dev * pdev = to_pci_dev(...);

unsigned int mcrbase = 0x50
+ 4 * ap->port_no;

u16 mcr3;
u8 ata66;

/ * Do the extra channel work * /
pci_read_config_word(pdev,

mcrbase+2,&mcr3);
/ * Set bit 15 of 0x52 to enable .. * /
pci_write_config_word(pdev,

mcrbase + 2,..);
pci_read_config_byte(pdev,

0x5A,&ata66);
/ * Reset TCBLID/FCBLID to output * /
pci_write_config_word(pdev,

mcrbase+2,mcr3);
if (ata66 & (2 >> ap->port_no))

return ATA_CBL_PATA40;
else

return ATA_CBL_PATA80;
}

DrComp signature: 1.8
static int hpt37x_cable_detect(...)
{

struct pci_dev * pdev = to_pci_dev(...);

u8 scr2, ata66;

pci_read_config_byte(pdev,
0x5B, &scr2);

pci_write_config_byte(pdev,
0x5B,...);

udelay(10); / * debounce * /

/ * Cable register now active * /
pci_read_config_byte(pdev,

0x5A,&ata66);
/ * Restore state * /
pci_write_config_byte(pdev,

0x5B,scr2);
if (ata66 & (2 >> ap->port_no))

return ATA_CBL_PATA40;
else

return ATA_CBL_PATA80;
}

Figure 10. Similar code between two different HPT ATA controller
drivers essentially performing the same action. These are among the
least-similar functions that DrComp is able to detect these functions as
related. The boxes show differentiating statements in the two functions
that account for the close signature values.

a small amount of per-device code. Most device classes, though,
replicate functionality for every driver. The problem of writing re-
peated/redundant code is well documented. It causes maintainabil-
ity issues in software development [13], and is also a significant
cause of bugs in the Linux kernel [8, 22, 29]. Providing the right
abstractions also helps in code standardization and integrating ker-
nel services such as power management in a correct fashion across
all drivers. Without a global view of drivers, it can be difficult to
tell whether there are opportunities to share common code.

To address this question, we developed a scalable, code similar-
ity tool for discovering similar code patterns across related drivers
and applied it to Linux drivers. The goal of this work is to find
driver functions with substantially similar code, indicating that the
common code could be abstracted and removed from all drivers to
reduce driver code size and complexity.

5.1 Methodology

We developed a new code-similarity tool to handle the number
of Linux drivers to find similarities rather than exact copies. We



DrComp signature:1.594751
static int nv_pre_reset(......)
{

..struct pci_bits nv_enable_bits[] = {
{ 0x50, 1, 0x02, 0x02 },
{ 0x50, 1, 0x01, 0x01 }

};

struct ata_port * ap = link->ap;
struct pci_dev * pdev = to_pci_dev(...);
if (!pci_test_config_bits

(pdev,&nv_enable_bits[ap->port_no]))
return -ENOENT;

return ata_sff_prereset(..);
}

DrComp signature:1.594751
static int amd_pre_reset(...)
{

..struct pci_bits amd_enable_bits[] = {
{ 0x40, 1, 0x02, 0x02 },
{ 0x40, 1, 0x01, 0x01 }

};

struct ata_port * ap = link->ap;
struct pci_dev * pdev = to_pci_dev(...);
if (!pci_test_config_bits

(pdev,&amd_enable_bits[ap->port_no]))
return -ENOENT;

return ata_sff_prereset(..);
}

Figure 11. The above figure shows identical code that consumes dif-
ferent register values. Such code is present in drivers where multiple
chipsets are supported as well as across drivers of different devices.
The functions are copies except for the constants as shown in the boxes.

needed to parse through the entire driver source tree consisting of
5 million lines of code, with close to a million lines of code in
large classes like network drivers. Most existing clone-detection
tools develop a stream of tokens or tree/graphs and perform ann x
n comparison of all code snippets to detect clones, which given the
size of the driver classes, is not possible. In addition, we needed
a similarity detector for finding code that that is closely related
but not identical. With more control over how similar regions are
detected using information from the semantics of drivers, we are
able to detect more useful similar code. For example, while parsing
function calls, we treat calls to the device and kernel differently,
improving the accuracy of our similarity-detection tool.

Our similarity tool,DrComp, is based onshape analysis3 [11].
This is a method to determine whether clusters of points have a
similar shape and variants of these technique are often used to
cluster data, to determine nature of data distribution, and to detect
identical shapes in computer vision [3].

DrComp generates a set of multidimensional coordinates for ev-
ery function in every driver. It then detects as similar two func-
tions whose coordinate sets (shape) are similar. DrComp processes
a driver function and adds a point to the function’s shape for every
statement or action in statement for loop, kernel interaction, con-
ditionals, device interaction, variable assignment, break and return
statements. The coordinates of the point are the offset into the func-
tion (line number) and the statement type. To improve accuracy, it
is important that the generated shape of the code emphasizes the
important characteristics of the function. Hence, we also reinforce
the shape of the function by weighting statements that are important
yet sparse, such as a function returns and calls to kernel functions.
The shape of each driver function is a cloud of points on plane
representing the structure of the program. While we consider only
two dimensions of the code, the statement type and edit distance to
generate the points, our tool can easily be extended to include ad-
ditional dimensions based on code features (such as nesting depth)
or driver features (such as interrupt frequency).

To eliminate complex comparison of two driver functions, we
further reduce the shape of a driver down to a singlesignature
value. We compute the signature as a function of Euclidean dis-
tance between all the points in the code cluster obtained above.
The output of DrComp is a signature for every function in every
driver. Thus, two functions with identical code will have identical
signatures. Furthermore, code that is similar, in that it has a similar
structure of loops and I/O operations, will have similar signatures.

Figure 10 shows an example of some of theleast similarre-
lated code in drivers we found. These two functions have signatures
within 0.05% of each other. DrComp only looks for the code struc-
ture from statement types (also distinguishing kernel and device

3 We perform geometric shape analysis, not the program analysis technique
of the same name.

invocations) and edit distance, so functions may use different argu-
ments (register values), compare against different values or loop on
different conditions, and still be grouped as similar code.

5.2 Redundancy Results

DrComp detected that 8% of all driver code is very similar to
other driver code. The results of our similarity study are shown in
Table4. For classes with many similarities, we show the number of
fragment clusters (sets of similar code), as well as the total number
of functions that are similar to another function. For the results in
above table, we show results within individual driver classes and
not across classes, as they are less likely to benefit from a shared
abstraction.

Overall, we identified similarities within a single driver, across a
subset of drivers in a class, and in some cases across most drivers in
a class. Within a single driver, we found that the most common form
of repeated code was wrappers around device I/O, driver library
or kernel functions. These wrappers either convert data into the
appropriate format or perform an associated support operation that
is required before calling the routines but differ from one another
because they lie on a different code path. These wrappers could be
removed if the kernel interface supported the same data types as the
device or if drivers provided appropriate abstractions to avoid such
repeated code.

We also find swaths of similar functions across entire classes of
drivers. The major difference between drivers for different chipsets
of the same device are often constant values, such as device regis-
ters or flag values. For example, ATA disk drivers abstract most of
the code into a core library,libata , and each driver implements a
small set of a device-specific functionality. Commonly, these func-
tions are short and perform one or two memory-mapped I/O reads
or writes, but with different values for every driver. Figure5 shows
two functions from different ATA drivers with substantially similar
code. This practice generates large bodies of very similar drivers
with small differences. Further abstraction could additionally sim-
plify these drivers, for example, replacing these routines with tables
encoding the different constants. Similarly, a hardware specifica-
tion language [25] may be able to abstract the differences between
related devices into a machine-generated library.

Finally, we note similarities across subsets of drivers in a class.
For example, another common class of similarities is wrappers
around kernel functions and driver libraries for that class: the
release method for frame buffers is virtually identical across
many of the drivers, in that it checks a reference count and re-
stores the VGA graphics mode. There are a few small differences,
but refactoring this interface to pull common functionality into a
library could again simplify these drivers.

Implications: Overall, these results demonstrate that there are
many opportunities for reducing the volume of driver code by ab-
stracting similar code into libraries or new abstractions. We visu-
ally inspected all function clusters to determine how a programmer
could leverage the similarity by having a single version of the code.
We see three methods for achieving this reduction: (i) procedural
abstractions for driver sub-classes, (ii) better multiple chipset sup-
port and (iii) table driven programming.

The most useful approach isprocedural abstraction, which
means to move the shared code to a library and provide parameters
covering the differences in implementation. There is significant
code in single drivers or families of drivers with routines perform-
ing similar functions on different code paths. Creating driver-class
or sub-class libraries will significantly reduce this code. Second,
existing driver libraries can be enhanced with new abstractions that
cover the similar behavior. There are many families of drivers that
replicate code heavily, as pointed out in Table4. Abstracting more
code out these families by creating new driver abstractions that



Driver
class

Driver
subclass

Similar
code
fragments

Fragment
clusters

Fragment
size (Avg.
LOC)

Redundancy results and action items to remove redundant code

acpi 64 32 15.1
Procedural abstraction for centralized access to kernel resources and passing
get/set configuration information as arguments for large function pairs.

gpu 234 108 16.9
Procedural abstractions for device access. Code replicated across drivers, like in
DMA buffer code for savage, radeon, rage drivers, can be removed by supporting
more devices per driver.

isdn 277 118 21.0
Procedural abstraction for kernel wrappers. Driver abstraction/common library for
ISDN cards in hisax directories.

char input 125 48 17.23
Procedural abstraction for kernel wrappers. Driver abstraction/common driver for
all touchscreen drivers. Procedural abstraction in Aiptek tablet driver.

media 1116 445 16.5
Class libraries for all Micron image sensor drivers. Procedural abstraction in saa
7164 A/V decoder driver and ALI 5602 webcam driver.

video 201 88 20
Class libraries for ARK2000PV, S3Trio, VIA VT8623drivers in init/cleanup,
power management and frame buffer operations. Procedural abstraction in VESA
VGA drivers for all driver information functions.

sound 1149 459 15.1
Single driver for ICE1712 and ICE1724 ALSA drivers. Procedural abstraction for
invoking sound libraries, instead of repeated code with different flags. Procedural
abstraction for AC97 driver and ALSA driver for RME HDSPM audio interface.

ata 68 29 13.3
Common power management library for ALI 15x3, CMD640 PCI, Highpoint ATA
controllers, Ninja32, CIL 680, ARTOP 867X, HPT3x3, NS87415 PATA drivers
and SIS ATA driver. Table driven programming for device access in these drivers.

block ide 18 9 15.3 Procedural abstraction for the few wrappers around power management routines.

scsi 789 332 25.6
Shared library for kernel/scsi wrappers for Qlogic HBA drivers; pmc sierra and
marvell mvsas drivers. Large redundant wrappers in mp2sas firmware, Brocade
FC port access code.

net
Ethernet/
wireless

1906 807 25.1

Shared library for wireless drivers for talking to device/kernel and wireless rou-
tines. Lot of NICs share code for most routines like configuration, resource allo-
cation and can be moved to a single driver with support for multiple chipsets. A
driver sub-class library for all or vendor specific Ethernet drivers.

infiniband 138 60 15.0 Procedural abstraction for Intel nes driver.

Table 4. The total number of similar code fragments and fragment clusters across driver classes and action items that can be taken to reduce them.

support multiple chipsets can simplify driver code significantly. Fi-
nally, functions that differ only by constant values can be replaced
by table-driven code. This may also be applicable to drivers with
larger differences but fundamentally similar structures, such as net-
work drivers that use ring buffers to send and receive packets. By
providing these abstractions, we believe there is an opportunity to
reduce the amount of driver code, consequently reducing the in-
cidence of bugs and improving the driver development process by
producing concise drivers in the future.

6. Conclusions
The purpose of this study is to investigate the complete set of
drivers in Linux, to avoid generalizing from the small set of drivers
commonly used for research, and to form new generalizations.

Overall, we find several results that are significant to future re-
search on drivers. First, a substantial number of assumptions about
drivers, such as class behavior, lack of computation, are true for
many drivers but by no means all drivers. For example, instead
of request handling, the bulk of driver code is dedicated to initial-
ization/cleanup and configuration, together accounting for 51% of
driver code. A substantial fraction (44%) of drivers have behavior
outside the class definition, and 15% perform significant computa-
tions over data. Thus, relying on a generic frontend network driver,
as in Xen virtualization, conceals the unique features of different
devices. Similarly, synthesizing driver code may be difficult, as this
processing code may not be possible to synthesize. Tools for auto-
matic synthesis of driver code should also consider driver support
for multiple chipset as we find that Linux supports over 14,000 de-
vices with just 3,217 bus and device drivers.

Second, our study of driver/device/kernel interactions showed
wide variation in how drivers interact with devices and the kernel.
At one end, miniport drivers contain almost exclusively device-

specific code that talks to the device, leaving kernel interactions to
a shared library. At the other end, some drivers make extensive calls
to the kernel and very few into shared device libraries. This latter
category may be a good candidate for investigation, as there may be
shared functionality that can be removed. Overall, these results also
show that the cost of isolating drivers may not be constant across
all driver classes.

Third, our investigation of driver/device interaction showed that
USB and XenBus drivers provide more efficient device access than
PCI drivers, in that a smaller amount of driver code supports access
to many more devices, and that coarse-grained access may support
moving more driver functionality out of the kernel, even on the
device itself. Furthermore, many drivers require very little access to
hardware and instead interact almost exclusively with the bus. As a
result, such drivers can effectively be run without privileges, as they
need no special hardware access. We find that USB and Xenbus
provide the opportunity to utilize the extra cycles on devices by
executing drivers on them and can effectively be used to remove
drivers from the kernel leaving only standardized bus code in the
kernel.

Finally, we find strong evidence that there are substantial oppor-
tunities to reduce the amount of driver code. The similarity analysis
shows that there are many instances of similar code patterns that
could be replaced with better library abstractions, or in some cases
with tables. Furthermore, the driver function breakdown in Sec-
tion3shows that huge amounts of code are devoted to initialization;
this code often detects the feature set of different chipsets. Again,
this code is ripe for improvement through better abstractions, such
as object-oriented programing technique and inheritance [31].

While this study was performed for Linux only, we believe
many similar patterns, although for different classes of devices,
will show in other operating systems. It may also be interesting to



compare the differences in driver code across operating systems,
which may demonstrate subtle differences in efficiency or com-
plexity. Our study is orthogonal to most studies on bug detection.
However, correlating bugs with different driver architectures can
provide insight on the reliability of these architectures in real life.
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