
DF Robot Input Shield

Now that you have the ball running across the screen, the next step is

to add animation to the pong paddles. To do this, the same redrawing

technique will be used, this time utilizing the input shield. However,

implementation is not as straight forward as just plugging the device in and

having it work off the bat.

When using multiple shields, it is important to keep track of how each

device interfaces with the Arduino board. Unfortunately, sometimes multiple

peripherals and shields will end up using the same interface and pins,

causing the data sent from those devices to continually interfere with one

another giving you erroneous results. An interface is simply a protocol used

to send data and communicate between devices, and different interfaces

utilize different GPIO pins. In our case, the Adafruit LCD screen uses the

SPI interface (http://arduino.cc/en/Reference/SPI#.Uy8KGvldXbk_) as does

the DF Robot Input Shield. While this provides some dilemma, we can get

around it using a few different approaches. This project will utilize the serial

interface which sends bytes of data via the TX/RX pins (usually pins 0 and 1

on the UNO) to get around this problem. This will involve using two

Arduino boards communicating with each other. By using two boards, one

will be dedicated to handling the Shield Input, while the other will be

dedicated to the display and game code.

The first step is to connect your second Arduino board to the DF

Robot input shield. The next step is to determine the values for the analog

stick for which the stick is in the up, down, or middle position. Using the

following pin assignment chart:

http://arduino.cc/en/Reference/SPI#.Uy8KGvldXbk_

 Create a simple sketch that will read in the values when it is moved

and print those values to the Serial monitor. To do this:

o Define the pins used and assign them variable names

o Define the pins as input or output in the setup method using the

pinMode() method

o Use the analogRead() method to read the values or assign them

to a variable

o Print those values to the serial monitor

 Use the serial monitor to determine the read in values of the analog

stick for the up, down, and centered positions.

The next step is to begin serial communication. You will need two

separate sketches, separate from your pong game. Using the provided

sketches to help you get started, serially send the analog signals to your

second Arduino using the Serial.write() method. On the receiving end, you

will read in the bytes of data using the Serial.read() method. Take a look at

the serial interface reference page provided by Arduino to give you more

insight on the mechanics and other functions you may want to use:

http://arduino.cc/en/reference/serial#.Uy8PdfldXbk. To serially connect the

two Arduino boards, connect the TX pin of the Arduino connected to

the Input Shield to the RX pin, the TX pin of the other Arduino to the

RX pin of the Input Shield dedicated Arduino, and then connect both

Arduinos’ grounds to each other.

Some other things to keep in mind when writing your sending/receiving

sketches:

 You want to read the data in a synchronized fashion; you don’t want

to read in the down analog value if you’re expecting to read in the up

value first. The serial interface itself is asynchronous. Remember, the

data is read in the order that it is sent out, but if you’re sending board

sends data faster than the receiving board, errors will arise.

 Based on the nature of the serial interface, you need to implement a

delay on the sending side so the receiving Arduino has time to

accurately read in every subsequent byte.

http://arduino.cc/en/reference/serial#.Uy8PdfldXbk

 A delay may or may not be needed in the receiver’s code depending

on how you code it.

 The Serial.print() function also sends ASCII formatted data to the

serial port, which could give you errors on the receiving side;

comment out and Serial.prints() you may have.

 Serial.write() sends a byte at a time (0-255), but the analog values can

exceed a byte (0 -1023). Use the Map() function to overcome this:

 http://arduino.cc/en/reference/map#.Uy8UcfldXbk

With all of this is mind, your tasks are to now:

 Create two sketches to send and receive analog input

 With both boards powered on, verify that you are reading correct

values on the receiving side by printing them to the serial monitor as

you move your analog stick around.

 Take your code from the receiving side and implement is as a single

separate function in your actual PONG game. Then repeatedly call

this function in the void loop.

 Verify that you get the same results again when you move around the

analog stick when you are running the receiving code from within

your game.

Some more things to keep in mind:

 As you develop your pong game, depending on how efficiently you

coded your sending/receiving code, you may have to periodically test

that you still receive the appropriate input from the shield and that

there is no noise/invalid data being read.

 Delay may accrue as your code lengthens and there are more things to

redraw and more situations that need to be handled. This delay may

also affect your receiving side code depending on how you wrote it.

http://arduino.cc/en/reference/map#.Uy8UcfldXbk

 If you have delay in your receiving code, because it will be called as a

function in the game, that means the average game speed will slow

down. Try to code the sending/receiving code as efficient as possible

to avoid slow down.

Now with your serial communication fully implemented, and your Input

Shield working, you can proceed with creating the player paddle movement.

Because you mapped the input values, take the floor of your values divided

by 4. Those will be your new base line values for reading in analog input.

Your final tasks for this session are as follows:

 Once you know the values for all three stick positions, make a

variable, like you did for the ball, called something such as ‘pxdir’

(paddle X direction). Also make a variable that will stand for the X

coordinate of the paddle (‘X’ will do nicely). These variables will be

used to update the status of the paddle’s position in order that a new

paddle can be drawn.

 Depending on which way you have your interface set up (which

direction with relation to the pixels of the screen is up and down) will

determine how the joystick values affect the ‘pxdir’ value. The way

we have our Pong game set up is that when the joystick is up, ‘pxdir’

is set to 1, when the joystick is down, ‘pxdir’ is set to -1, and when the

joystick is in the middle, ‘pxdir’ is set to 0.

o By adding ‘pxdir’ to X and updating the X variable:

 X = ‘pxdir’ + X

o You can update the paddle’s position just by using the variable

X as the x pixel in fillRect(x, y, height, width, color)

instruction.

