Name:
NetID: @wisc.edu

Homework 6

CS/ECE 252 Section-2 (MWF 11:00)

Assigned on October 23rd

Due on Friday, November 6th by the beginning of class (11 AM)

The question will instruct you on whether to submit via hard copy or via the browser based
infrastructure at https://discovering.cs.wisc.edu/homework/homework.html

Neat and legible handwriting is preferred, especially for your name and NetID.

1. a) Write the AVR assembly code equivalent to the following Python code snippet. (3)(0)
Annotate your code with comments for full credit.
Use the browser-based simulator to write and submit.

i =23
k =0
while (i > 12):
J3=1 -2
while(j < 30):
J =3 + 10
k =%k +1
i=1i-3

Hint: there is no addi AVR instruction for "j =j + 10". Therefore, you may have
to use subi with negative 10 instead.

b) What is the value of 1, j, and k after the program halts? ()
Submit via hard copy.

https://discovering.cs.wisc.edu/homework/homework.html

2. Write an AVR assembly program that outputs the indices of 'c' in “computer sciences”.
Use an assembler directive to load the string into memory and then loop through the
memory loaded. It should print 0, 10, and 14. For simplicity, when using assembler
directives to initialize RAM or using arrays of <= 256 in length, you can assume that all
numbers are stored in the same HI memory pointer. In other words, the LO memory
pointer will not overflow when incrementing it to loop through the array. This is because
only X was taught in class (and not -X, X+, Y, -Y, Y+, Z, -Z, and Z+). A3)

Annotate your code with comments for full credit.
Use the browser-based simulator to write and submit.

3. In the following piece of code, what should the rjmp instruction’s immediate values be,

in case we want to jump to the label (1.5)
a. L1
b. L2
c. L3
Ll:
1di rle,1
rjmp L1/L2/L3
1di r19,1
L2:
1di r17,1
L3:
1di ri18,1

Note that label names are not a part of ISA, and they are not present in the program
memory.

Submit via hard copy.
a. Ll =

b. L2
c. L3 =

4. The stack pointer has been set up to point to 65535, and registers r16 through r23
contains values to push. The top set of tables are the structures before the code is
executed. Fill out the bottom set of tables after the code is executed. You need to fill out
every highlighted cell. 0)

Register File RAM

rf = rl = r2 = r3 = RAM[65531]=0

0 0 0 0

r4 = rS= ré = r7 = RAM][65532] =0

0 0 0 0

RAM][65533] =0

rl6= |[r17= |r18= r19 = Stack Pointer RAM][65534] =0

86 101 114 121

r20= |r2l= |r22= r23 = 65535 RAM][65535] =0

69 97 115 121
push rlé ; stack manipulation line 1, push 86
push rl7 ; stack manipulation line 2, push 101
push rl8 ; stack manipulation line 3, push 114
pop rO ; stack manipulation line 4, pop to r0
push rl9 ; stack manipulation line 5, push 121
push r20 ; stack manipulation line 6, push 69
pop rl ; stack manipulation line 7, pop to rl
pop r2 ; stack manipulation line 8, pop to r2
push r2l1l ; stack manipulation line 9, push 97
push r22 ; stack manipulation line 10, push 115
pop r3 ; stack manipulation line 11, pop to r3
pop r4 ; stack manipulation line 12, pop to r4
push r23 ; stack manipulation line 13, push 121
pop r5 ; stack manipulation line 14, pop to r5
pop r6 ; stack manipulation line 15, pop to ré6
pop r7 ; stack manipulation line 16, pop to r7

Register File RAM

r0= |rl= |r2= r3= RAM[65531] =

r4 = rs= ré = r7 = RAM[65532] =
RAM][65533] =

rl6= |r17= |r18= r19 = Stack Pointer RAM][65534] =

r20= |(r2l= |r22= r23 = RAM[65535] =

Submit via hard copy.

5. The stack pointer has been set up to point to 2437. The top set of tables are the structures
before the code is executed. Fill out the bottom set of tables after the code is executed.

You need to fill out every highlighted cell. 3)(0)
Register File RAM|[2433] =15
r0=0 rl=1 RAM|2434] = 14
r2=2 r3=3 RAM|2435] =13
rd=4 r5S=5 RAM|2436] = 12
r6==6 r7=7 Stack Pointer RAM|2437] =11
r§ =8 r9o=9 2437 RAM|2438] =10

push r7

push ré6

pop rO

and rl, r2

push r8

pop r2

add rl, rO

pop r9

sub r2, r9

push ré6

push ré6
Register File RAM|2433] =
rf = rl = RAM|2434] =
r2 = r3 = RAM|2435] =
r4 = rS= RAM|2436] =
ré = r7 = Stack Pointer RAM|2437] =
r8§ = rg= RAM|2438] =

Submit via hard copy.

6. This question tests assembly directives.

Write an AVR assembly program that prints out the 3 bit input interpreted as signed
magnitude, and then print out the 3 bit input interpreted as 2’s complement. You can assume that
the 3 bits has been loaded into 130 and that it will be at most 3 bits long. You can load r30 with 0
through 7 for testing purposes. For simplicity, when using assembler directives to initialize RAM
or using arrays of <= 256 in length, you can assume that all numbers are stored in the same HI
memory pointer. In other words, the LO memory pointer will not overflow when incrementing it
to loop through the array. This is because only X was taught in class (and not -X, X+, Y, -Y, Y+,

Z,-Z,and Z+). ()]
1di r30, 5
Input 3-bit
presentation | signed magnitude 2’s complement interpretation
interpretation
Actual LCD output | Actual LCD output
0 000 0 0 0 0
1 001 1 1 1 1
2 010 2 2 2 2
3 011 3 3 3 3
4 100 -0 0 -4 252
5 101 -1 255 -3 253
6 110 -2 254 -2 254
7 111 -3 253 -1 255

Hint: Since this is only asking for 3 bits, it might be a good idea to hard code the bytes
with the assembler byte directive.

Annotate your code with comments for full credit.
Use the browser-based simulator to write and submit.

7. This question tests more AVR programming, and models the in-class example.

Write an AVR assembly program that measures the length (inclusive) between the first
binary 1 and the last binary 1 in a number, and print the length to the output LCD. You can
assume that the number has been loaded into r30. You can load r30 with anything for testing
purposes. (3 extra credit)

1di r30, 116

Example 1: Let’s assume that 116 is loaded into r30. 116 in binary is 01110100. The index of the
first 1 is 1 (from left and starting from 0), and the index of the last 1 is 5, so the length is 5.

Example 2: Let’s assume that 5 is loaded into r30. 5 in binary is 00000101. The index of the first
1 is 5 (from left and starting from 0), and the index of the last 1 is 7, so the length is 3.

Example 3: Let’s assume that 255 is loaded into r30. 255 in binary is 11111111. The index of the
first 1 1s O (from left and starting from 0), and the index of the last 1 is 7, so the length is 8.

Example 4: Let’s assume that 16 is loaded into r30. 16 in binary is 00010000. The index of the
first 1 is 3 (from left and starting from 0), and the index of the last 1 is 3, so the length is 1.

Example 5: Let’s assume that 0 is loaded into r30. 0 in binary is 00000000. Since there is no 1°s,
the length is 0.

Example 6: Let’s assume that 41 is loaded into r30. 41 in binary is 01010010. The index of the
first 1 is 1 (from left and starting from 0), and the index of the last 1 is 6, so the length is 6.

Annotate your code with comments for full credit.
Use the browser-based simulator to write and submit.

8. This question tests AVR programming.
Write a AVR program that takes a positive integer and print to output LCD the largest
number that divides it that is not itself. You can assume that that the number has been loaded into
30. ()

1di r30, 116

Example 1: Let’s say 116 is loaded into r30. Then 1, 2, 4, 29, 58, and 116 divides 116. The
largest number that divides 116 that is not itself is 58.

Example 2: Let’s say 24 is loaded into r30. Then 1, 2, 3, 4, 6, 12, and 24 divides 24. The largest
number that divides 24 that is not itself is 12.

Example 3: Let’s say 23 is loaded into r30. Then 1 and 23 divides 23. The largest number that
divides 23 that is not itself is 1.

Example 4: Let’s say 0 or 1 is loaded into r30. 0 and 1 is not a test case your program has to
handle. Your program can handle edge cases 0 and 1 however you wish.

Example 5: Let’s say 255 is loaded into r30. Then 1, 3, 5, 15, 17, 51, 85, and 255 divides 255.
The largest number that divides 255 that is not itself is 85.

Annotate your code with comments for full credit.
Use the browser-based simulator to write and submit.

9. This question tests Memory (RAM) and array usage.
Repeat Homework 3 Question 9, but this time use assembly language instead of Python
and use an array in RAM. You must set all 15 Fibonacci numbers in RAM before you

begin printing. For simplicity, when using assembler directives to initialize RAM or using
arrays of <= 256 in length, you can assume that all numbers are stored in the same HI
memory pointer. In other words, the LO memory pointer will not overflow when
incrementing it to loop through the array. This is because only X was taught in class (and
not -X, X+, Y,-Y, Y+, Z, -Z, and Z+). &)
Annotate your code with comments for full credit.

Use the browser-based simulator to write and submit.

For reference, Homework 3 Question 9:
Repeat Homework 2 Question 11, but this time store the Fibonacci numbers into

an array and then print out the array at the end.

For reference, Homework 2 Question 11:
Write a program to print the first n Fibonacci numbers. (Initialize n as 15). Start
with 0 and 1 as the first two numbers. The next number is created by adding the
previous two numbers. Thus, the series would go like this: 0112358 13 21 34
55 89 144 233 377.

Note: Due to overflow, it 1s okay for your program to instead print0 1 123 58 13 21 34
5589 144 233 121

For reference, answer to Homework 3 Question 9:

n =15
i =2
fa = [0,1]

while(i < n):
fa = fa + [fa[i-1] + fal[i-2]]
i=1i+1
i=0
while(i < n):
print(fali])
i=1i+1

10. This question tests callee-save stack. Using very few registers are required to get practice
with pushing and popping values from stack.

Repeat homework 5 question 15, but with 2 caveats. First caveat: you must use a function
to convert from fahrenheit to celsius. The function should only contain the conversion (looping
from 32 to 50 should be outside of the function). If the function needs more registers, then it
must be callee-saved. Second caveat: you can only use 2 registers (r16 and r17 (along with 10
registers 17, 18, 61, and 62))! @)

Annotate your code with comments for full credit.
Use the browser-based simulator to write and submit.

For reference, problem statement to Homework 5 Question 15:
Repeat Homework 2 Question 12, but this time use assembly language instead of
Python, and go from 32 to 50 instead.

For reference, problem statement to Homework 2 Question 12:
Say you wanted to print out the Celsius equivalent for all integer Fahrenheit
temperatures from 32 degrees F to 50 degrees F. Write a program to print out
this conversion information. The pseudocode for implementing this is given
below.

The equation for converting Fahrenheit (F) to Celsius (C) is: C — (F - 32) * %

i. Set F’s initial value to 32 (lower bound)

ii. While F is less than or equal to 50 (upper bound)
iii. Convert Fahrenheit to Celsius.

iv. Print the number of degrees in Fahrenheit
V. Print the number of degrees in Celsius
Vi. Increment F

For reference, sample solution to Homework 3 Question 10:
def getCelsiusFromFahrenheit (F) : # here 1s function declaration
return (F - 32) * 5 / 9 # here is function return value
main, start of program

F = 32 # initialize F to 32
while (F <= 50): # loop while F <= 50
C = getCelsiusFromFahrenheit (F) # call function and save into C
print (F) # print F
print (C) # print C
F=F+1 # increment F

For reference, sample solution to Homework 5 Question 15:
; rlo is used for F
; rl7 is used to initialize IO 17
; rl8 is used for F-32
; rl9 is used for (F-32)*5
; r20 is used for C, (F-32)*5/9
; r21 is used for 51, since cpi is removed
; r22 is used for 9, since cpi is removed

1di r21, 51 ; r21 = 51 (constant)

1di r22, 9 ; r22 = 9 (constant)

1di rl6,32 ; F o= 32

1di r17, 255 ; set rlée to all high bits

out 17, rl7 ; all high bits IO 17 for output

whileLoop: ; label for while(F <= 50):

cp rle, rz2l ; while(F < 51):, compare F to 51

brsh halt ; while(F < 51):, break loop and halt if F >= 51

mov rl8, rlo ; rl8 = F

subi rl18, 32 ; rl8 = F - 32

1di r19, O ; rl9 = 0, could have optimize multiplication better
add rl9, rls8 ; rl9 = (F - 32) * 1

add rl9, rl8 ; rl9 = (F - 32) * 2

add rl9, rl8 ; rl9 = (F - 32) * 3

add rl9, rls8 ; rl9 = (F - 32) * 4

add rl9, rl8 ; rl9 = (F - 32) * 5, our dividend

1di r20, O ; r20 = 0, this 1s our gquotient counter
divideLoop: ; label to loop while dividend >= divisor

cp rl9, r22 ; dividend >= 9 ?

brsh incrementQuotient ; 1f so, then branch to incrementQuotient

; else C = (F - 32) *5 /9
out 18, rlé6 ; print (F)
out 18, r20 ; print (C)
inc rleé ; F=F + 1

rijmp whileLoop ; end of while loop, jump back to check condition again
incrementQuotient: ; label to inc gquotient and subtract from
dividend

subi rl9, 9 ; subtract divisor, 9, from dividend

inc r20 ; 1lncrement quotient counter

rjmp divideLoop; end of incrementQuotient

; Jump to check dividend >= divisor again

halt: ; label to jump to if F >= 51

halt ; halt to end program

11. This question tests caller-save stack.
Repeat the previous question, but this time, if the function needs more registers, then it
must be caller-saved. 2(0)
Annotate your code with comments for full credit.
Use the browser-based simulator to write and submit.
12. Use AVR assembly to convert a 16-bit fixed point binary number to a 16-bit floating

point floating point number. Assume that the integer value has been loaded into r30 and
the fractional value has been loaded into r31. Put the high byte in r29 and the low byte in
r28. You may assume that the integer input will be non-zero less than or equal to 127
while the fractional input is not zero. You can load anything non-zero <= 127 into r30
and anything non-zero into r31 for testing purposes. (4-extra-eredit) (3 extra credit)

1di r30, 116
1di r31, 123

Example: For this example, Ob is binary, 0d is decimal (default if not specified), and Ox is

hexadecimal, and ignore the underscores (used for readability). Let’s say 116
(Ob0111_0100) is loaded into r30 and 123 (0Ob0O111 1011) is loaded into r31. Then, the
decimal value of this number is 116.48046875 as calculated below:

027+ 15204127+ 1 %2 +02°+ 1 %22 +0 2" +0%2°

027+ 1427241427+ 1427+ 1%27+0%2 0+ 1 %277+ 1%27F
After normalizing, the exponent becomes 0d21 (6 + 15 bias) (Obl_0101) and the fraction
becomes Ob1101 0001 1110 11 (the last 4 bits will be removed because only 10 bits of
the fractional values is kept in the half-precision floating point notation. Therefore, the
resulting 16-bit floating point number will be O0b0 10101 1101000111 =
0b0101 0111 0100 0111 = 0x5747. Therefore, 129 should have 87 (0x57) and 36128
should have 71 (0x47) at the end of this program.

Annotate your code with comments for full credit.
Use the browser-based simulator to write and submit.

13. This question tests assembling assembly language to machine code,
By hand, assemble the block of assembly language below to machine code. Check your
answer with the browser-based assembler/simulator. 0)
Submit via hard copy (to avoid getting binary executables).

1di r31,9
mov rl,r31
add rle,rl

14. This question test executing machine code.

Interpret the block of machine code below by unassembling it back into assembly
language. Check your answer with the assembler to see if it assembles back into the given
machine code. A3)

Comments/annotation not needed for this question.

Use the browser-based simulator to write and submit.

1110000000001111
1110000000010010
0001011100010000
1111010000001000
0010111110100001
1001010100010011

or equivalently

0xe00f
O0xe012
0x1710
0xf408
Ox2fal
0x9513

