Unsigned integer representation
- With n bits, max value that can be represented: \(2^n - 1\)

Binary to Decimal conversion
\[
\begin{array}{ccccccc}
 & & & & 1 & 0 & 1 \\
2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 \\
\hline
32 & 16 & 8 & 4 & 2 & 1 & 0 \\
\end{array}
\]
\[= 52\]

6 bits, so max number possible is \(2^6 - 1 = 63\)

Decimal to Binary (unsigned)
1. Find number of bits required \(\lfloor \log_2(n) \rfloor + 1\)
2. For each bit-position, starting from highest, Repeatedly check if number greater or equal to \(2^n\) position, and set bit to 0 or 1 accordingly

Number of bits required (unsigned)
- \(52: \log_2(52) = 5.7; \lfloor \log_2(5.7) \rfloor = 5; \# \text{ bits} = 6\)
 - Check \(2^5 < 1 \leq 52 < 64\) \(\text{YES}\)
 - Check \(2^6 < 1 \leq 52 < 64\) \(\text{YES}\)
- \(102: \log_2(102) = 6.67; \lfloor \log_2(6.67) \rfloor = 6; \# \text{ bits} = 7\)
 - Check \(2^5 < 1 \leq 102 < 128\) \(\text{YES}\)
 - Check \(2^6 < 1 \leq 102.127 < 128\) \(\text{YES}\)
- \(276: \log_2(276) = 8.10; \lfloor \log_2(8.10) \rfloor = 8; \# \text{ bits} = 9\)
 - Check \(2^7 < 1 \leq 276 < 512\) \(\text{YES}\)
 - Check \(2^8 < 1 \leq 276.545 < 512\) \(\text{YES}\)
 - Check \(2^9 < 1 \leq 276.255 < 512\) \(\text{YES}\)

Decimal to Binary (2’s comp)
- First get number of bits \(\lfloor \log_2(\text{abs}(\text{number})) \rfloor + 2\)
- If positive number, then use process we developed before and you are done
- If negative number,
 - First get representation of the absolute value
 - Then invert all bits
 - Then add +1 to the inverted bits

Decimal to Binary 2’s complement
- 132
 1. \# bits = 7
 2. Negative number
 a. Representation of -132 = 1011100
 b. Invert all bits:
 \[01001010\]
 \[+0000001\]
 \[= 01001011\]
 3. Add +1:
 \[01001011\]
 \[+1011100\]
 \[= 11001100\]

2’s complement binary to decimal
- If MSB is 0, same as unsigned
- If MSB is 1, reverse steps:
 a. Invert all bits
 b. Add +1
 c. Now determine magnitude
 Remember it is a negative number

2’s Complement Binary to decimal
- \(1001100\)
- MSB is 1
 a. Invert all bits:
 \[0110011\]
 b. Add +1:
 \[0110011\]
 \[+0000001\]
 \[= 0110010\]
 \[2^6\] \(\text{YES}\)
 \[2^5\] \(\text{NO}\)
 \[2^4\] \(\text{NO}\)
 \[2^3\] \(\text{NO}\)
 \[2^2\] \(\text{NO}\)
 \[2^1\] \(\text{NO}\)
 \[2^0\] \(\text{NO}\)
 \[\text{ Remainder}\]
 \[= 52\]
 c. Go back to 2’s complement range and check
 d. \(2^6 + 0 = 64\)
 e. \(2^6 - 1 = 63\)
 f. \(2^5 + 0 = 32\)

2’s complement arithmetic
It’s bitwise addition!
- \(52 + (-01) = -49\)
 a. \[0011100\]
 b. \[+1011001\]
 c. \[= 11001100\]

Conversion from binary to decimal
- \(1.101010\)
 1. \# bits = 7
 2. Negative number
 a. Representation of -1.101010 = 10101011
 b. Invert all bits:
 \[0101011\]
 \[+0000001\]
 \[= 0101010\]
 3. Add +1:
 \[0101010\]
 \[+1010100\]
 \[= 1111110\]

Floating Point Standard
IEEE-754 Standard
Single-Precision Representation
- \(S\) \(8\) \(23\)

Decimal to Binary 2’s complement
- 132
 1. \# bits = 7
 2. Negative number
 a. Representation of -132 = 1011100
 b. Invert all bits:
 \[01001010\]
 \[+0000001\]
 \[= 01001011\]
 3. Add +1:
 \[01001011\]
 \[+1011100\]
 \[= 11001100\]

Extension rule: 2s complement
- \(1001100\)
 7 bits
 - To take a number represented in \(X\) bits can get its representation in \(Y\) bits, \(Y > X\), copy the MSB into the "new" bit positions

3’s complement
- \(0101111\)
 1. \# bits = 8
 2. Add +1:
 \[0101111\]
 \[+0000100\]
 \[= 0101101\]

4’s complement
- \(0001011\)
 1. \# bits = 6
 2. Add +1:
 \[0001011\]
 \[+0000100\]
 \[= 0001111\]

5’s complement
- \(0000110\)
 1. \# bits = 6
 2. Add +1:
 \[0000110\]
 \[+0000100\]
 \[= 0001010\]