
CH7: Microarchitecture

How do we build a physical machine that can

take physical representations of numbers that

represent commands in the ISA

and perform the corresponding operations of

moving physical representations of numbers

between various physical storage units?

Overview

• ISA is an interface

– Assembly language – text representation

– Machine code – representation as numbers

• Microarchitecture

– Implementation of the interface using logic

gates (we will abstract away what exact logic

gates are and deal with that in the next

chapter)

Microarchitecture

• Definition: Implementation of the ISA

• Two components

– describe a computer as a specific kind of

abstract machine called a state machine.

– build this state machine as a physical device

using various circuit components.

Today

• Concepts

– State machine

– Circuit component

•LOTS of new notation 

End goal

State machine

State machine notation

• List of states (with “names”)

• Edges indicate transitions of when to go to

next state

Microarchitecture state machine

• It is a simple 5 state state machine

– Fetch an instruction

– Decode it – figure out what values go where

– Execute – perform computation

– Memory – access memory if necessary

– Writeback – write results somewhere

Fetch

• Remember that the value stored in the PC

is the address of the current instruction

• In the fetch stage, we feed the value from

PC into the program memory to read the

actual instruction from that address.

Decode

• we need to figure out which instruction it

is,

• and then what its various bits mean.

• For instance, if we get

1110010100011001, we can decode this

as an ldi instruction that should write value

01011001 to register 10001.

Execute

• Actual work happens here

• For e.g.: for add r20,r30, the decode stage

will have determined that we're storing to

r20, and will have read out the values from

r20 and r30

• In the execute stage, then, we actually add

the two values.

• We will also computing the new SREG

Memory

• Access memory if necessary to write or

read

• Based on whether instruction is ld or st

Writeback

• Write the results to the register file

Auxiliary registers

• INST: For storing the current instruction,

so of width 16

• REG: For storing a register number, so of

width 5

• VAL: For storing something that would be

stored in RAM or a register.

LDI

• LDI r17, 30

• Fetch: INST = PM[PC]

• Decode:

– REG = the bits of INST that say which register

to write to

– VAL = the bits of INST that say which value to

write

– REG = 1,INST[7:4]

– VAL = INST[11:8],INST[3:0]

LDI

• Execute: Nothing happens

• Memory: Nothing happens

• Writeback: write results

– RF[REG] = VAL

– PC = PC + 1

End goal

LD

• Fetch: same as LDI

• Decode:

– REG = bits of INST saying which register to

write to

– ADDR = bits of INST saying which address in

data memory to read

– ADDR = RF[26],RF[27]

– New auxilliary register

LD

• Execute: nothing

• Memory

– VAL = data_memory[ADDR]

• Writeback

– RF[REG] = VAL

We can do this for each

instruction 

