
Microarchitecture trace: precise
sequence of execution with values

Microarchitecture trace
4 lines for each cycle

Line 1: Cycle #

Line 2: State number (in binary)

Line 3: Relevant control signals

Line 4:
• Auxiliary register name and value (if any written);

 OR

• Register filename number = value RF[#] = value
 OR

• PC = new value

ldi r16, 45

ldi r17, 23

ldi r18, 11

add r17, r18

breq 4

rjmp -3

ldi r16, 45

Cycle: 5
State: 10011 (PC = PC+1)
Control signals: PC_we = 1, PC_sel = 0, All others 0
Aux registers: None ; PC=1

Cycle: 4
State: 10010 (RF[REG] = VAL)
Control signals: RF_we = 1, All others 0
Aux registers: None; RF[16]=45

Cycle: 3
State: 00101 (VAL = INST[11:8],INST[3:0])
Control signals: VAL_we = 1, VAL_sel = 3, All others 0
Aux registers: VAL = 45

Cycle: 2
State: 00001 (REG = 1,INST[7:4])
Control signals: REG_we = 1, REG_sel = 0, All others 0
Aux registers: REG = 16

Cycle: 1
State: 00000 (INST = PM[PC])
Control signals: INST_we = 1, All others 0
Aux registers: INST = 57869

Cycle: #
State:
Control signals:
Aux registers:

ldi r16, 45

ldi r17, 23

ldi r18, 11

add r17, r18

breq 4

rjmp -3

Cycle: 5
State: 10011 (PC = PC+1)
Control signals: PC_we = 1, PC_sel = 0, All others 0
Aux registers: None ; PC=2

Cycle: 4
State: 10010 (RF[REG] = VAL)
Control signals: RF_we = 1, All others 0
Aux registers: None; RF[16]=23

Cycle: 3
State: 00101 (VAL = INST[11:8],INST[3:0])
Control signals: VAL_we = 1, VAL_sel = 3, All others 0
Aux registers: VAL = 23

Cycle: 2
State: 00001 (REG = 1,INST[7:4])
Control signals: REG_we = 1, REG_sel = 0, All others 0
Aux registers: REG = 17

Cycle: 1
State: 00000 (INST = PM[PC])
Control signals: INST_we = 1, All others 0
Aux registers: INST = 57263

ldi r16, 45

ldi r17, 23

ldi r18, 11

add r17, r18

breq 4

rjmp -3

Cycle: 5
State: 10011 (PC = PC+1)
Control signals: PC_we = 1, PC_sel = 0, All others 0
Aux registers: None ; PC=3

Cycle: 4
State: 10010 (RF[REG] = VAL)
Control signals: RF_we = 1, All others 0
Aux registers: None; RF[18]=11

Cycle: 3
State: 00101 (VAL = INST[11:8],INST[3:0])
Control signals: VAL_we = 1, VAL_sel = 3, All others 0
Aux registers: VAL = 11

Cycle: 2
State: 00001 (REG = 1,INST[7:4])
Control signals: REG_we = 1, REG_sel = 0, All others 0
Aux registers: REG = 18

Cycle: 1
State: 00000 (INST = PM[PC])
Control signals: INST_we = 1, All others 0
Aux registers: INST = 57387

ldi r16, 45

ldi r17, 23

ldi r18, 11

add r17, r18

breq 4

rjmp -3

Cycle: 4
State: 01010 (REG2 = INST[9],INST[3:0])
Control signals: REG2_we = 1, All others 0
Aux registers: REG2 = 18

Cycle: 3
State: 00111 (VAL1=RF[REG])
Control signals: VAL1_we=1, RF_sel=0, All others = 0
Aux registers: VAL1=23

Cycle: 2
State: 00010 (REG=INST[8:4])
Control signals: REG_we=1, REG_sel = 1, All others = 0
Aux registers: REG=17

Cycle: 1
State: 00000 (INST=PM[PC])
Control signals:INST_we=1
Aux registers:INST=3858 which is same as 0000111100010010

Cycle: #
State: ()
Control signals:
Aux registers:

ldi r16, 45

ldi r17, 23

ldi r18, 11

add r17, r18

breq 4

rjmp -3

Cycle: 9
State: 10011 (PC = PC+1)
Control signals: PC_we = 1, PC_sel = 0, All others 0
Aux registers: PC=4

Cycle: 8
State: 10010 (RF[REG] = VAL)
Control signals: RF_we = 1,RF_sel = 0, All others 0
Aux registers: None
Register file: RF[17] = 44

Cycle: 7
State: 01101 (Update SREG)
Control signals: SREG_we = 1, All others 0
Aux registers: SREG (ZFLAG = 0)

Cycle: 6
State: 01011 (VAL = VAL1 + VAL2)
Control signals: VAL_we = 1, VAL_sel = 1, A_sel = 1, B_sel = 0,
 ALU_op = 0,All others 0
Aux registers: VAL = 44

Cycle: 5
State: 01000 (VAL2 = RF[REG2])
Control signals: VAL2_we = 1, VAL2_sel = 0, RF_sel = 1, All others 0
Aux registers: VAL2 = 11

Trace simulator here:
http://discovering.cs.wisc.edu/sim/uarch/uarch.html

Adding a new instruction!

• Figure out whether current states are enough

• Implementation

– Need new auxiliary registers?

– Need new circuit blocks?

– Need new muxes?

– Need new control signals?

inc (instruction)

• inc r1

– Put name in REG (state: 00010)

– Read RF[REG] and put into VAL1 (state: 00111)

– Put 1 into B somehow!

• By putting 1 into OFF (new state)

– Perform ALU_op = 1 (addition), VAL=VAL1+OFF
(new state)

– Write VAL into REG (state: 10010)

– PC=PC+1 (state: 10011)

1

Now 2 bits

regjump instruction

• regjump R#; PC = PC + RF[R#] + 1
R# in INST[9],INST[3:0]

– INST=PM[PC] (state: 00000)

– Put R# in REG2 (state: 01010)

– Read RF[REG2] and put into VAL2 (state: 01000)

– VAL=PC+VAL2 (new state: A_sel=0, B_sel=0)

– PC=VAL (state: 10100)

– PC=PC+1

brlo, brsh, brne

• No new state necessary!

Logic
C Z Select

0 0 1

0 1 0

1 0 0

One IMPORTANT take-away
Every module implements its interface and thus
becomes independent of anything else happing

in computer!

REG2

dout

ALU PM

addr dout dou
t

PC

din

we

dout

INST

din

we

dout

REG

din

we

dout

din

we

OFF

din

we

dout

9,[3:0]

0

[9:3]

[11:0]

RF

we

din

addr dout

x VAL1

din

we

dout

VAL2

din

we

dout

1,[7:4]

[8:4]

ADDR

din

we

dout

A

B

sregin

op

RAM

we

din

addr dout

SREG

din

we

dout

Q

Sreg_out

[11:8],[3:0]

VAL

din

we

dout

+1

State Machine Controller

inst_in

PC_sel
PC_we

INST_we REG_sel

REG_we

REG2_we

OFF_sel

OFF_we

RF_sel

RF_we VAL1_we

VAL2_we

A_sel
B_sel

ADDR_we

ALU_op

RAM_we

SREG_we

VAL_sel

VAL_we

VAL2_sel

Chapter summary

• State machine, circuit blocks, registers

• Processor:

– 5 execution steps

– Implemented with microarchitecture

• Datapath

• Control signals (state-machine controller)

– Conceptual execution

• Traversal of set of states

What I am going to test you on

• Basic understanding of circuit blocks

• Combination of VERY SIMPLE circuits

• Execution trace of instructions

– State transitions

– Microarchitecture state

• Given a new instruction,

– How to modify state machine?

– Vague ideas on how to modify processor.

Cycles per instruction (CPI)

Instruction type Cycles

ldi 5

subi 8

cpi 7

ld 6

st 6

add 9

sub 9

Cp 8

breq 5

rjmp 5

Iron Law of Computing

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝐶𝑃𝐼𝑖 ∗ #𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑖

9

𝑖=0

∗ 𝐶𝑙𝑜𝑐𝑘 𝑃𝑒𝑟𝑖𝑜𝑑

Big ideas

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝐶𝑃𝐼𝑖 ∗ #𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑖

9

𝑖=0

∗ 𝐶𝑙𝑜𝑐𝑘 𝑃𝑒𝑟𝑖𝑜𝑑

1. Pipelining (reduce clock period)

2. Caching

3. Superscalar execution

4. Out of order execution

5. Speculation

5 orders of magnitude!

11/13

Microarchitecture trace: tracing thru at a level of detail beyond the ISA. Text-representation of
everything that happens inside the machine. Shows aux registers, state, relevant control signals.

RF[#] for a store instruction → writing to memory

You should be able to look at a program and tell (with a little bit of math) how many cycles these
instructions should take.

Ex: ldi takes five instructions, 5 * 3 = 15
How can you determine how many lines an instruction will take? Go through the state machine and
trace it. Each state is a cycle!

Execution of one instruction is independent from the ones preceding it.

(The diagrams start at cycle 1.)

What methodology was used to assign the state numbers? Short answer: random.

How do we calculate INST?
1. Look up the encoding for LDI from chapter 6.
2. Convert all respective values (register, immediate) into binary and place them into the encoding.
3. Convert your binary string to decimal/hex.

(In the below table you can assume that all other control signals = 0)
1 Ldi 10000 INST_we = 1, INST = 57869 (use chapter 6 opcodes)

2 Ldi 00001 REG_we =1, REG_sel = 0, REG = 16

3 Ldi 00101 VAL_we = 1, VAL_sel = 3, VAL = 45

4 ldi 10010 RF_we = 1, RF_sel = 0, RF[16] = 45

5 ldi 10011 PC_sel = 1, PC_we = 1, PC = 1

--------END INSTRUCTION 1, BEGIN INSTRUCTION 2

(etc)

Also check out the awesome simulator by Daniel! → discovering.cs.wisc.edu/sim/uarch/uarch.html

And now for something different...

How would you add a new instruction to a machine? Four-step process on slides.

IMPORTANT: note that every module works independently of everything else! They all just use
whatever in/output they get without caring of pieces before and after.

How to reduce computation time required?
1. Pipelining: have multiple instructions running at once. Concurrent execution reduces time
required. Reduces clock period, increases clock frequency. Today we have pipelines as long as 25
stages.
2. Caching: You actually can't access memory in a single cycle. What you do instead is store a very
small, quick memory with relevant values before you actually know what they are. (Magic.)

3. Superscalar execution: multiple ALUs! Having four means you can execute four instructions at a
time. That makes you four times faster. Your architecture becomes bigger but transistors are
becoming smaller as time goes on.
4. Out of order execution: given instructions, sometimes you can execute in a different order than
the programmer provided. Pretty bizarre, eh?
5. Speculation: constant prediction of what's going to happen in your microarchitecture and hoping
that the prediction was right.

All of these have helped increase performance by FIVE ORDERS OF MAGNITUDE!

