CH8: Logic Gates and Transistors

Chapter Goals

- Logic gates
 - Combinational circuits
 - Sequential circuits register, memory
- Transistor
 - Basic transistor operation
 - Logic gates using transistor
- Physical manufacturing

Today

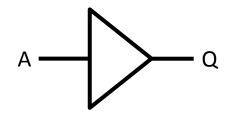
- Abstraction of logic gates
- Notation
- Simple logic gates
- Combining logic gates
- Creating our own circuits

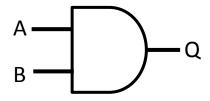
Logic gate abstraction

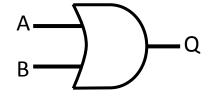
- Simple type of circuit block
- All inputs are one bit
- Typically every logic gate has one output

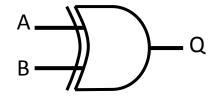
Symbol, truth-table, text-notation

 Boolean equations and schematics are equivalent representations of the same thing


Basic Logic Gates


NOT GATE


AND GATE


OR GATE

XOR GATE

Α	Q
0	1
1	0

Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

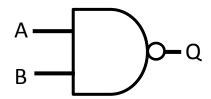
Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

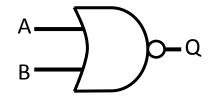
A	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

Text notation: ∼

Text notation: •

Text notation: +

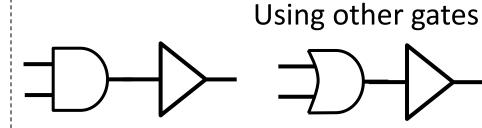

Text notation: ⊕

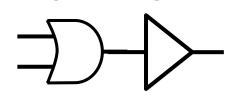

NAND, NOR, XNOR gate

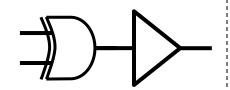
NAND GATE

NOR GATE

XNOR GATE

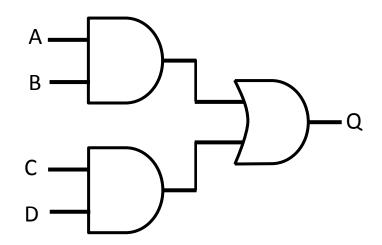



Α_	_1/_	
))) 0–0
B –	$\neg oldsymbol{\perp}$	


Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

А	В	Q
0	0	1
0	1	0
1	0	0
1	1	1

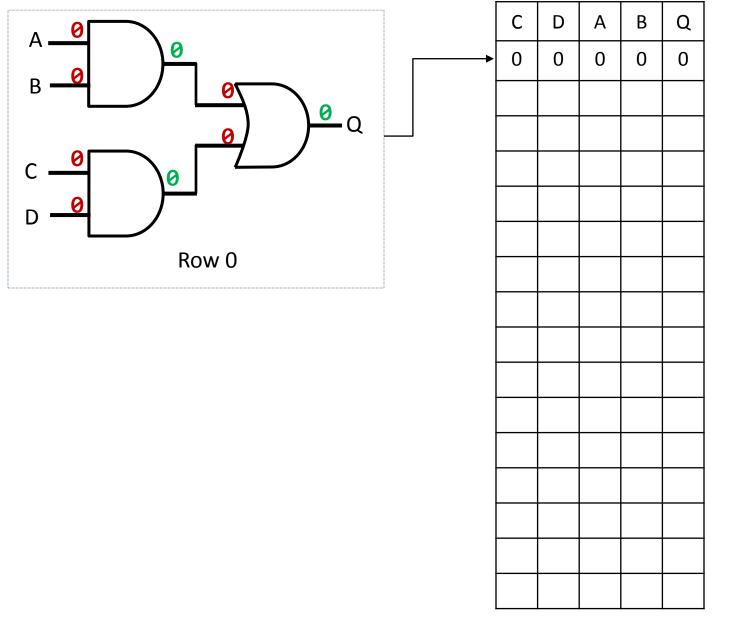


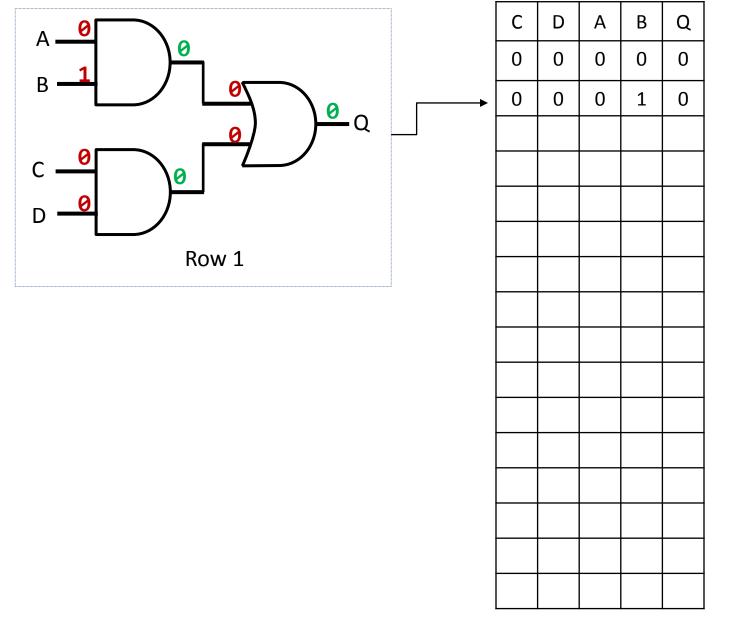
Combining logic gates

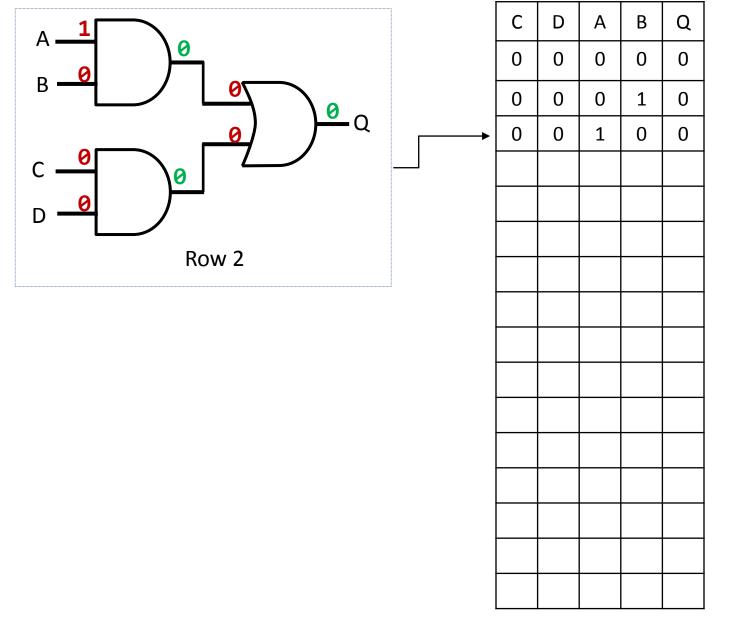
 Output of logic gate can be connected to any number of other inputs of other logic gates

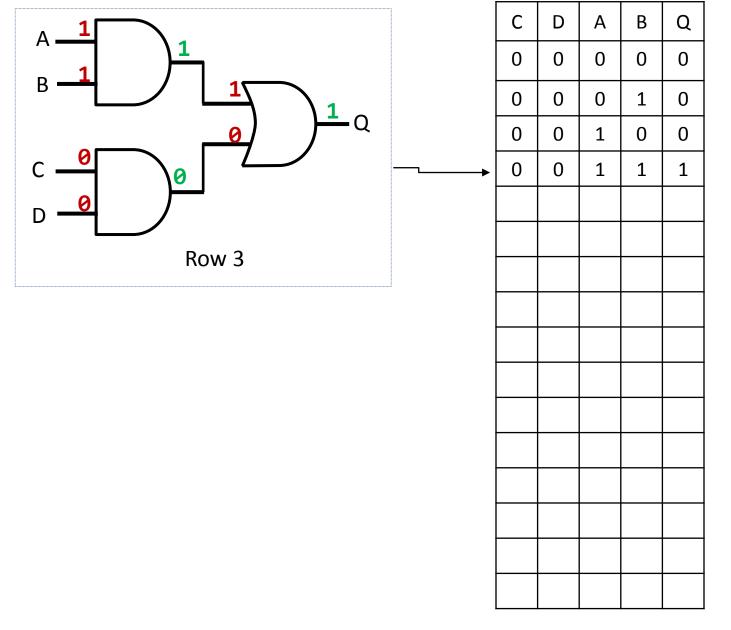
What does this circuit do?

What does a circuit do?


Write down the truth table for all possible inputs


OR


Write the Boolean equation for it

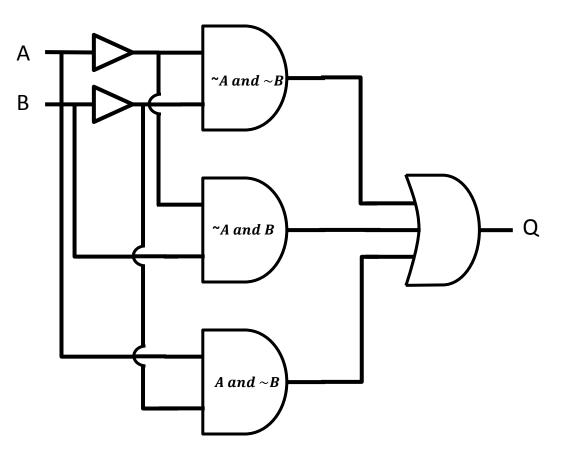

OR

Write the "minimized" logic equation

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

NOT(A) AND NOT (b)


Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

NOT(A) AND (b)

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

A AND NOT (b)

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

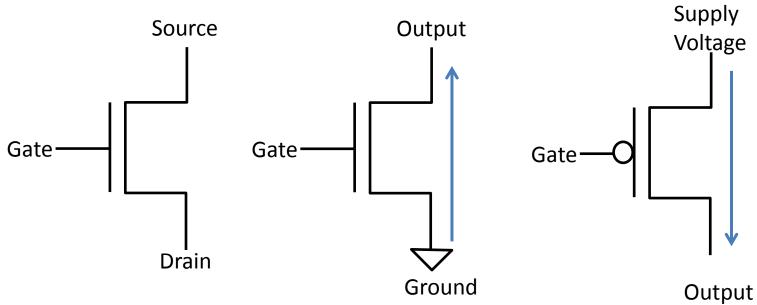
Algorithm

- For each row which has 1
 - 1. Find columns which are 0, negate that variable
 - 2. Find columns which are 1, keep that variable
 - 3. AND all the terms from (1) and (2) above for that row
 - OR the terms across all the rows which are 1

State	State name	PC sel	PC_we	INST_w e	REG sel	REG_w	OFF we	OFF sel	REG2_	RF sel	RF we	VAL1_w	VAL2_w	VAL2_s	ADDR_	A sel	B_sel
number				е		e			we			е	е	el	we		
00000	INST = PM[PC]		О	1		0	0		О		О	0	О		О		
00001	REG = 1,INST[7:4]		0	0	0	1	0		0		0	0	0		0		
00010	REG = INST[8:4]		0	0	1	1	0		0		0	0	0		0		
00011	OFF = Z?SEXT16(INS T[9:3]):0		0	0		0	1	1	0		0	0	0		0		
00100	OFF = SEXT16(INST[11:0])		0	0		0	1	0	0		0	0	0		0		
00101	VAL = INST[11:8],IN ST[3:0]		0	0		0	0		0		0	0	0		0		
00110	VAL = RF[REG]		О	0		0	0		0	0	0	0	0		О		
00111	VAL1 = RF[REG]		0	0		0	0		0	0	0	1	0		0		
01000	VAL2 = RF[REG2]		О	О			0		0	1	0	0	1	0	О		
01001	ADDR = X		0	0		0	0		0		0	0	0		1		
01010	REG2 = INST[9],INST[3:0]		0	0		0	0		1		0	0	0		0		
01011	VAL = VAL1 + VAL2		0	0		0	0		0		0	0	0		0	1	0
01100	VAL = VAL1 - VAL2		0	0		0	0		0		0	0	0		0	0	0
01101	Update SREG		0	0	_	0	0		0		0	0	0		0		
01110	VAL = OFF+PC		0	0		0	0		0		0	0	0		0	0	1
	VAL2 -					1	1	I	I	I	1	I	I	I		1	I

State	State	PC_se
number	name	
00000	INST =	
	PM[PC]	
	REG =	
00001	1,INST[7:4	
]	
00010	REG =	
00010	INST[8:4]	
	OFF =	
00011	Z?SEXT16(
00011	INST[9:3])	
	:0	
	OFF =	
00100	SEXT16(IN	
	ST[11:0])	
	VAL =	
00404	INST[11:8	
00101],INST[3:0	
]	
00110	VAL =	
00110	RF[REG]	
00111	VAL1 =	
	RF[REG]	
04.000	VAL2 =	
01000	RF[REG2]	
01001	VDDB - A	

$S_4S_3S_2S_1S_0$	PC_sel
00000	
00001	
00010	
00011	
00100	
00101	
00110	
00111	
01000	
01001	
01010	
01011	
01100	
01101	
01110	
01111	
10000	
10001	
10010	
10011	1
10100	0


$$PC_sel = S_0S_1 \sim S_2 \sim S_3S_4$$

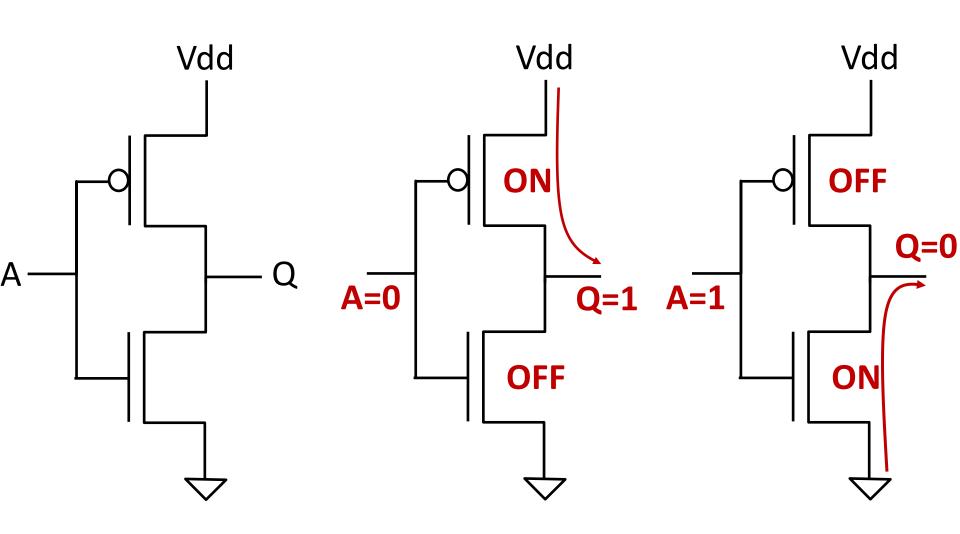
$S_4S_3S_2S_1S_0$	PC_we
00000	
00001	
00010	
00011	
00100	
00101	
00110	
00111	
01000	
01001	
01010	
01011	
01100	
01101	
01110	
01111	
10000	
10001	
10010	
10011	1
10100	1

 $PC_we = S_0S_1 \sim S_2 \sim S_3S_4 OR \sim S_0 \sim S_1 S_2 \sim S_3S_4$

What is a gate physically?

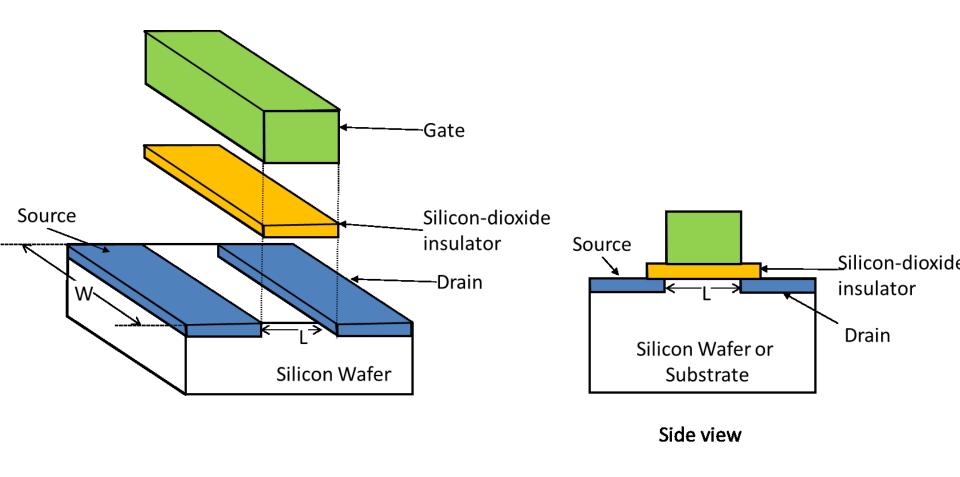
Transistor

Transistor terminals

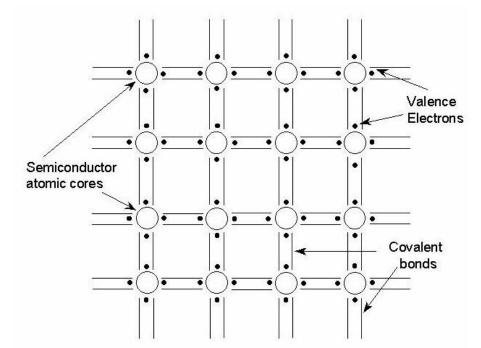

N-type transistor

Gate	Behavior
1	Closed Output=0
0	Open Output=Z

P-type transistor

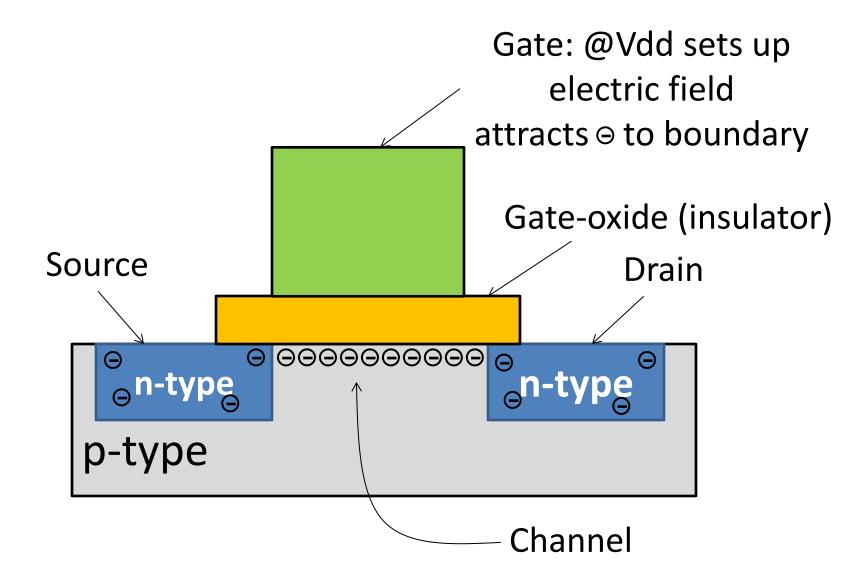

Gate	Behavior
0	Closed Output=1
1	Open Output=Z

NOT Gate with Transistors



What is it really?

Transistor physical diagram



- Silicon by itself is semiconductor
 - Has 4 valence electrons and forms a co-valent bond with 4 neighbors
 - Hard to break and does not conduct ☺

- Silicon by itself is insulator
 - Has 4 valence electrons and forms a co-valent bond with 4 neighbors
 - Had to break and does not conduct ☺
- Silicon + Arsenic makes it filled with electrons and conducting
- Silicon + Boron makes it filled with "holes" and conducting

Transistor Operation

Chapter Goals

- Logic gates
 - Combinational circuits
 - Sequential circuits register, memory
- Transistor
 - Basic transistor operation
 - Logic gates using transistor
- Physical manufacturing

CS 252

Lecture 28; 2015 Nov 18th; Transcribed Lecture notes

Announcements

Chapter 8 is released, but a few figures still need to be updated Chapter 8 is not in exam 3
Homework 7 due on Friday, November 20th
Exam 3 on Monday, November 23rd

Outline

Chapter 8 Logic Gates Chapter 8 Transistors

Questions

When a register outputs something and the register is not updated on the next instruction, does the register output the same thing on the next clock cycle? Yes.

Chapter Goals

Logic gates Transistors

Physical manufacturing (maybe some chemistry)

Logic Gates

```
definition
```

a circuit block

all inputs are one bit

every logic gate has one output

boolean equations and schematics are equivalent representations

basic logic gates (see truth tables for full description)

NOT gate (~) is set if the input is low

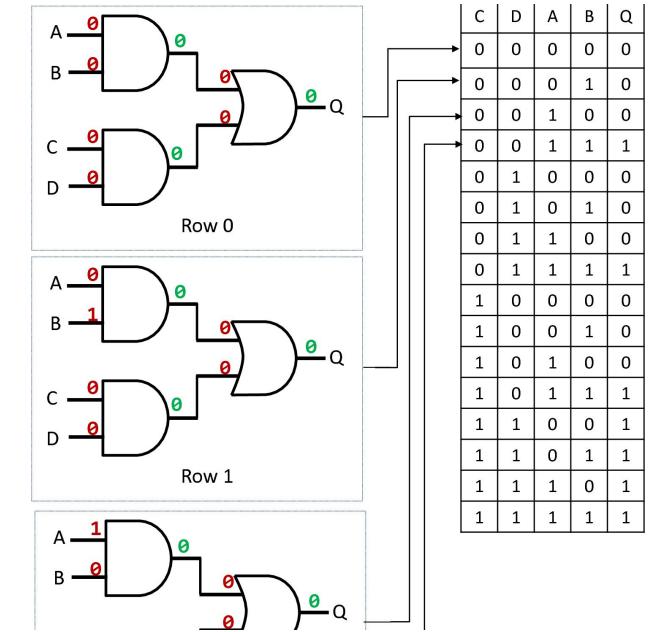
AND gate (·) is set if both inputs are high

OR gate (+) is set if either inputs are high

XOR gate (⊕) is set if exactly 1 input is high

NAND gate is set if either inputs are low

NOR gate is set if both inputs are low


XNOR gate is set if the inputs are the same

combining logic gates

output of logic gates can be connected to inputs of other logic gates determining what combined gates do

use truth table write boolean equation write minimized loic equation

example 1: gates to truth table

example 2: truth table to boolean equation

Α	В	Q	max term
0	0	1	~A * ~B
0	1	1	~A * B
1	0	1	A * ~B
1	1	0	0

$$Q = (\sim A * \sim B) + (\sim A * B) + (A * \sim B) + 0$$

Let's look at the large truth table at the end of chapter 7.

Every output has to be independent on all other outputs

We can use the state number as the input and control signals as output

Example 1: PC_sel is high at state 10011

PC_sel =
$$S_4 * \sim S_3 * \sim S_2 * S_1 * S_0$$

Example 2: PC_we is high at state 10011 and 10100

PC_we =
$$(S_4 * \sim S_3 * \sim S_2 * S_1 * S_0) + (S_4 * \sim S_3 * S_2 * \sim S_1 * \sim S_0)$$

What is a logic gate physically?

Transistors

Definition

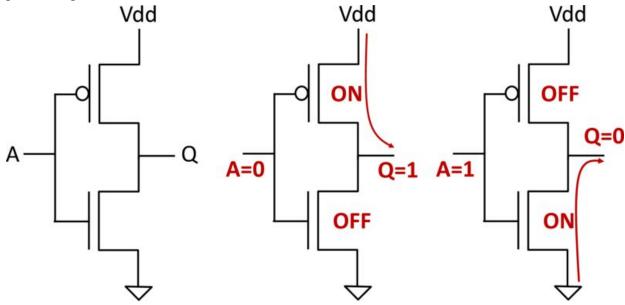
Transistors has a source, gate, and drain

N-type transistor

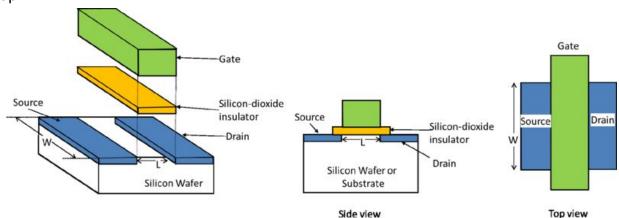
If the gate is 1, then the switch is closed/connected

If the gate is 0, then the output is undefined

One terminal of P-type transistor is connected to ground


P-type transistor

If the gate is 0, then the switch is closed/connected


If the gate is 1, then the output is undefined

One terminal of P-type transistor is connected to high voltage

Building a NOT gate with transistors

Make up

Transistor size is the length

The width is usually set to be twice the length

Every 2 years, manufacturers continue to find a way to decrease the length and width Moore's Law: the amount of transistors on a given silicon area double every 2 years.

The semiconductor industry is in a race to follow Moore's law

Smaller transistors also means lower power consumption

Chemistry

Important to understand how transistors work. Will NOT be covered on exams.

Silicon is an insulator (4 valence electrons and does not conduct)

Silicon + Arsenic makes it filled with electrons and conducting

Silicon + Boron

Hopping valence bands to conduct electricity

Transistor creation and operation

Start with Silicon. Lightly dope it with Boron to make a p-type material

Carve out 2 n-type regions doped with Arsenic

Apply voltage to set up an electric field so that the p-type substrate attach electrons

There is now a path for electrons to flow between the n-type bands

Electron mobility is the measure of how long the electrons take to move between n-type wells

Can use electron mobility to determine exact timing results

Transistor history

Moore's law makes the length shorter, which allows the transistor to switch faster

Problem if length is too short: Avalanche effect of current to flow from gate to p-type this causes leakage power, which is inefficient use of standby power

Gate-oxide is switch to high K material to set up high capacitive field

Silicon gate had to change to metal gate to make the connection