Today

* Arrays and Functions wrap-up
 Naming scope

Naming scope

def f(x): def f(x):
y =1 y =1
return x + vy return x + vy
print(f(2)) y = 2
print(y) print(f(3))
print(y)

What happens?

def f(x):

y

y

=1

return x + y

2

print(f(3))
print(y)

: . . : Output
Current line Why we went to this line Variables after current line runs sougll‘l
_» It was the first line (after the _,
y definition of the function) Y
print (£ (3)) | It was the next line x=3y=2
Call to the function f with argument value 3
_ We just called the function £, so =3v=1
Y we go to its first line y
return x + .
y It was the next line x=3y=1
f ends now with a return value of 4
We now return to the line that y=2 (The functlonl 1S OVer, SO any changes it made to
: : : any variables are discarded and any variables that
print (£ (3)) | called the function with the : 4
: existed before the function call retain their previous
return value of the function
values
print (y) It was the next line y=2 4 2

Basic Rule

Variables are “local” to function they are
declared In

Like all variables, they begin their life
undefined

When function ends they become
inaccessible

Variables with same name in two different
functions or the “main” program have their
own “lives”

Scope 2ISA

Each variable gets its own register

Before calling a function we save all
registers (variables)

After function “returns” we restore all
registers (variables)

Save to a place called “stack”

Why have Functions?

« Readability
* Maintainability
* Modularity/composition

Libraries

 Collection of functions is called a library

 Many examples:

— Googlemapsapi, graphing library, statistics
libraries...

from googlemaps import Client

apli _key = "AIzaSyADna65ndIZRBBvx-V213ZLgHxO5KMyApY"
gmaps = Client(api_key)

origin = "1210 W. Dayton St., Madison, WI"
destination = "1605 Linden Dr, Madison, WI"

d = gmaps.directions(origin, destination)

print d.distance

for x in d.steps
print x['html_instructions']

import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np
import matplotlib.pyplot as plt

Example data

people = ('Tom', 'Dick', ‘'Harry', 'Slim', 'Jim")

y pos = np.arange(len(people))

performance = 3 + 10 * np.random.rand(len(people))
error = np.random.rand(len(people))

plt.barh(y_pos, performance, xerr=error, align='center',
alpha=0.4)

plt.yticks(y pos, people)

plt.xlabel('Performance")

plt.title('How fast do you want to go today?')

plt.show()

Jim

Slirm

Harry

Dick

Tom

How fast do you want to go today?

Performance

Summary

» Arrays & Functions
 Naming scope
* Variables

CE/ECE 252 Lecture 8: Arrays and More
2015 Sept 21
Transcribed Notes

Function Example 1
def f (x)
y = 1
return(x + vy)
print (£ (21))
print (y) # y 1is not defined at this point,
vy above 1s out of scope

Function Example 2
def f(x)
y =1
return(x + vy)
y = 2
print (£(3))
print (y) # will print 2,
v in G(x) is out of scope

Scoping

All variables are local to the function they are defined in. They cease to exist
outside of the function.

Global variables are accessible from anywhere, but try to avoid them.

Scope -> ISA

def f(x)
y =1 # 1d R14, 1
z = £3(...) # need a stack of return addresses
return(x + y) # add R15, R4, R14

#—branch—+3
branch +3 will not work if called from multiple locations
we need to store the return address when calling

return, Jjump back to return address

y = 2 # 1d R13, 2
print (£(3)) #—branceh—3
1d R4, 3
callWithArgument -4, R4
jump up 4 lines of code
send R4 as the argument
print (y)
print (£(75))
def f2(x, vy, z, a, b, c, d) # callWithArgument -8,

return (x + y + z + a + b + c + d)
problem: all instructions can have at most 4 numbers
solution:

create an array,
put values into the array,
pass in the location of the array

Arrays

arr[] = {1, 4, 10, 45} # array starts at R27

X = arr[0] # ldarray R11, R27, O
load into R11
R27 is where the array begins
0 is the offset

y = arr[2] # ldarry R14, R27, 2

alternatively: add R27, R27, 2; ldarray R14, R27, O

z = 73 # 1d R13, 73

Register File Memory

Location 173 (arbitrary)
1

4

10

45

Register 27 (arbitary)
173

No implication

Arrays and functions are simple programming constructs.

