HW 3 References

(3 pts) question 1 tests stepping through code and edge-cases (section 2.2.1)

(2 pts) question 2 connects arrays back to the ISA. (section 3.3 and lecture 5)

(1 pt) question 3 tests logical operators and modulus (section 3.4 and 2.3.2)

(2 pts) question 4 tests logical operators and modulus (section 3.4 and 2.3.2)

(2 pts) question 5 tests functions and scoping (section 3.5 and 3.5.2)

(5 pts) question 6 tests if-else, debugging, edge cases, and logic errors (section 1.4.3.3, 2.2.1,
24.4.1)

(3 pts) question 7 tests Python syntax and syntax errors (section 1.4.3.3 and 2.4.1)
(7 pts) question 8 tests loops (section 2.4.4.3)

(3 pts) question 9 tests arrays (section 3.3)

(3 pts) question 10 tests functions (section 3.5)

HW 3 Solutions

1. Tests edge-cases (section 2.2.1)

m = 3
n =20
product = m
(1) while(n > 1):
(1i1) product = product + m
(111) n=n-1
(iv) print (product)
a.
Variables
Current Calculation performed by Next
line this line m n product line:
i checkinginn>1 3 0 3 iv
iv printing product 3 0 3 end

b.
The code does not work for edge case (or corner case) n == 0.
Off-by-one error is also be accepted.

Fix:
m = 3
n =20
product = 0 # initialized the product to O
while(n > 0): # continue while n > 0

product = product + m
n=n-1
print (product)

2. Tests arrays and connects it back to the ISA (section 3.3 and lecture 5)
Sample solution 1:

Yes, | can write an ISA instruction for accessing the 9th character of the 5th string. My ISA
allocates a fixed length of 256 characters for each string. Therefore, if the array is in r1, | can do
ldr1,4,8
r1 because the array location is stored in r1
4 because it is the 5th string (offset from 0)
8 because it is the 9th character (offset from 0)

Sample solution 2:

No. It is difficult because strings have a variable length. Therefore, there is no immediate values
that | can pass to access such a character.

3. Tests logical operators and modulus (section 3.4 and 2.3.2)

4. Tests logical operators and modulus (section 3.4 and 2.3.2)
a. 1 will satisfy the condition
b. 3 fails to satisfy (x%2==0 or x%3==1)
c. 4 fails to satisfy (x!=4)
d. 10 will satisfy the condition

5. Tests functions and scoping (section 3.5 and 3.5.2)

def bar(y):
print (y)
x =5
return x

y = 3

print (bar(y))

print (y)

3

5

3

6. Tests if-else, debugging, edge cases, and logic errors (section 1.4.3.3, 2.2.1, and 2.4.4.1)

a.
Method 1:
if (number > 0):
print ("positive")
else:
if (number <= 0):
print ("not positive")
b.
Method 2:
results = ""
if (number <= 0):

results = "not "
results = results + "positive"
print (results)

C.
Method 3 worked as is:
if (number > 0):
print ("positive")
else:
print ("not positive™)

7. Tests Python syntax and syntax errors (section 1.4.3.3 and 2.4.1)

h3110WOR1D = "Hello World"

= "h3110WOR1D"

weAreTheChampions = 1

infinite loop to fight ‘til the end

while (weAreTheChampions == 1): # 2 syntax errors on this line

should have use == for comparison

missing colon at end of while

note: Champions was misspelled
print ("flgh7lng \’til the end")

fahrenhype = -40 # int is not valid Python syntax
celsius = (9 / 5) * (fahrenhype + 32) # note:missing close parenthesis
print (celsius) # note: celsius had wrong case

8. Tests loops (section 2.4.4.3)

import input
positiveOddNumberInput = input.get num("Enter a number: ")

print ("begin printing horizontal line")

lineToPrint = ""

i =20

while (i < positiveOddNumberInput) :
lineToPrint = lineToPrint + "*"
i=1+1

print (lineToPrint)
print ("end printing horizontal line")

print ("begin printing vertical line")
i=20
while (i < positiveOddNumberInput) :
print ("*")
i=1i+1

print ("end printing vertical line")

print ("begin printing triangle 1")

lineToPrint = ""

i=20

while (i < positiveOddNumberInput) :
lineToPrint = lineToPrint + "*"
print (lineToPrint)
i=41i+1

print ("end printing triangle 1")

print ("begin printing triangle 2")
i=0
while(i < 1 4+ (positiveOddNumberInput / 2)):
whitespaceToPrint = ""
j =1
while (j < positiveOddNumberInput / 2):
whitespaceToPrint = whitespaceToPrint + " "
=3 +1
asterisksToPrint = "*"
J =0
while(j < 1):
asterisksToPrint = asterisksToPrint + "**"
j=3+1
lineToPrint = whitespaceToPrint + asterisksToPrint
print (lineToPrint)
i=1+1
print ("end printing triangle 2")

9. Tests arrays (section 3.3)

fa = [0,1]

while(i < n):
fa = fa + [fa[i-1] + fa[i-21]
i=1+1

print (fa)

10. Tests functions (section 3.5)

def ftoc(F):
return (F - 32) * 5 / 9

F = =50
while (F <= 50):
X = 4
C = ftoc(F)
if(F == C):

print ("Fahrenheit and Celsius are equal at -40 degrees!")
else:

print ("F=" + F + ", " + "C=" + C)
F=F+1

