Homework 5 [TOTAL POINTS: 42]

1. Convert the following 32 bit floating point hexadecimal number to its decimal value (as per
the scheme mentioned in the book): 3EA00000

Note that these conversions cannot be performed directly: hexadecimal and decimal numbers
must first be converted into intermediate binary in order to do the floating point conversion. Also, this
is a 32 bit floating point number. Refer to section 4.5 in the textbook for the scheme of the bits (1 bit
for the sign, 8 bits for the exponent, and the remaining 23 bits for the fraction).

Show your work for each step of the conversion for full credit.

(2)
Hexadecimal to binary:
0 01111101 010 0000 0000 0000 0000 0000
sign exponent fraction
+ 125 0.25
32-bit floating point number = (sign) * 2&renent-127 * (1 +fraction)
1 * 2A(125-127) * (1+0.25)
0.3125
2. There are three parts of an ISA. What are they? Explain each in detail. (3)

architecture: basic physical components
instruction set: instructions computer understands
encoding: instructions using a human-readable notation

3. For the following types of memory on the AVR chip, describe their type (persistent or
non-persistent), size (depth and width), speed, and function(s).
3)
(a) program memory
Type: Persistent
Size: 65536 by 16 (width) = 131072 bytes
Speed: Slow
Function: Storing the actual instructions that are being executed

(b) RAM

Type: Non-persistent

Size: 65536 by 8 (width) = 65536 bytes

Speed: Slow

Function: Storing large amounts of data that is not all needed immediately.

(c) SREG (status register)
Type: Non-persistent

Size: 1 by 8 (width) = 1 byte
Speed: Very fast

Function: Storing information about the most recent arithmetic operation the computer
performed

What is assembly language? What improvements does it make to ISA? (1)

Assembly language is a very slight layer over ISA. The main improvements are 1) specifying
offsets for jumps and branches, 2) initializing ram with specified data, and 3) including string
syntax.

What is non-persistent memory and why is it useful? (1)
Non-persistent memory erases after you turn the power off. It is useful if you do not want
memory saved after shutting down the power, like rage quitting video games.

What does an assembler do? (1)
Assembler converts ISA into numbers for storage into the program memory.

What registers can be used in the Idi instruction? (1)
reg 16 through 31

There are 7 control flow instructions that alter the program counter: breq, brne, brsh, brlo,
rimp, rcall, and ret. We can roughly categorize these as branching, jumps, and return
instructions. When would you use one type of instruction over the other? (2)

branching: when a comparison is done, conditional
rimp: general movement throughout code, unconditional
rcall/return: to go back once we finish running a block of code, used in functions

For the following assembly code, trace through it by hand and write the N, C and Z flag and PC
values after each line for the first 8 lines executed. Assume the initial values of all registers to
be 0. Note that AVR effectively uses an 8-bit representation, and the effect of this fact on the
N-flag. Check your answer with the browser-based AVR simulator.

(NOT GRADED)
C flag is set according to non-negative value
N flag is set according to two’s complement value
Instruction Negative | Carry Zero PC
1di rle6,100 0 0 0 1

1di rl17,244 0 0 0 2

add rl7,rle 1 0 3
add rl17,rl7 0 0 4
sub rle,rl7 1 0 5
1di rls8, 1 1 0 6
cp rle, rl8 0 0 7
breq -3 0 0 8
1di rl1l9, O 0 0 9

10. Consider the code snippet below.
(a) Trace through the code by hand and fill out the table below. Assume all registers are
initialized at 0. Check your answer with the browser-based AVR simulator.

(2)

Idirl6, 10
Idirl7, 7
incrl?7
cprle, r17
brne -3
halt
Registers
Current line | Calculation performed by this line Next line:
rlé rl7
i load 10 into r16 10 0 i
i load 8 into r17 10 8 iii
iii ri7=9 10 9 iv
iv compare 9 and 10 10 9 v

v jump back to line 3 10 9 iii
iii rl7 =10 10 10 iv
iv compare rl6 and r17 10 10 \%
v since they are equal, we ignore this line 10 10 Vi
vi halt

(b) Hopefully, you were able to fill out the table and not run into an infinite loop. Will you get an
infinite loop if the second line of the program was “Idi r17, 11” instead? If yes, what makes it

infinite? If no, at what point will the loop stop.

It would hit the max (overflow) and return to 0. r17 would then continuing incrementing from

(1)

0 until it equals 10 and break out of the loop.

11. Write assembly code to configure the complete PORT D as an output port and write 134 on

12.

this port.
(2)

1di r30, 255
out 17, r30
1di r30, 134
out 18, r30

Using the stack, write a simple assembly language function labeled myfunction that

compares two values in-the-top-two-entries-of thestack-and prints the higher number to
the output LED. If they are equal, print either value.

Initialize your stack to RAM location 3000. Rush-values4-and-3-onto-thestackand-then

ealtthisfunetion—Run your function with the values 3 and 4. Annotate your code with

comments for full credit. Submit using the browser-based simulator.

Sample answer:
rijmp myprogram

myfunction: ; pass inputs via rl9 and r20

push rlé6 ; push rl6é because want it to use to set output
1di rl16, 255 ; set rl6é to all high bits

out 17, rlé ; all high bits IO 17 for output

cp rl9, r20 ; compare values passed into myfunction
brlo 2 ; 1if rl9 < r20, skip to out 18, r20

out 18, rl9 ; output the contents of rl7

rjmp 1 ; jump over the next instruction

out 18, r20 ; output the contents of rl8

pop rlé ; pop registers used

ret ; end of myfunction

myprogram:

; initialize stack pointer to 3000 = 11*256 + 184
1di r31, 184

out 61, r31

1di r31, 11

out 62, r31l

; prepare 3 and 4 to pass into myfunction

1di r19,3

1di r20,4

rcall myfunction ;jump to myfunction

13. Convert the following Python code into assembly language. Assume x is stored in r16, y
inrl7,and zin r18, and a in r19. You may store values in other registers if necessary.

Annotate your code with comments. (4)
X = 2
1
z = x ty
if (1 z >= 2):
a =1
else:
a = 2

Sample answer:

1di rle6, 2 ; load x
1di r17, 1 ; load y
mov rl8,rlé6 ; Z = X

add rl18,rl7 ; z=x+y

1di r20, 2 ; our comparison value

cp rl8, r20 ; if z > 2

brsh 2 ; jump to 1di r19, 1

1di r19, 2 ; a= 2

rjmp 1 ; jJump over the next instruction
1di r19, 1 ; a=1

14. Repeat Homework 2 Question 11, but this time use assembly language instead of
Python. (6)
A hard coded solution will result in 0 points.
Annotate your code with comments, it is worth point(s).
Use the browser-based simulator to write and submit.

For reference, Homework 2 Question 11:
Write a program to print the first n Fibonacci numbers. (Initialize n as 15). Start
with 0 and 1 as the first two numbers. The next number is created by adding the
previous two numbers. Thus, the series would go like this: 0112358 1321 34
55 89 144 233 377.

Note: Due to overflow, it is okay for your program to instead print0112358 132134
5589 16 105 121

For reference, answer to Homework 2 Question 11:

n =15

counter =1

a =20

b =1

print (a)

while (counter<n) :
print (b)
temp = b
b=Db+ a
a = temp
counter = counter + 1

For reference, answer to Homework 2 Question 11 with a hard coded solution:
print (0)
print (1)
print (1)
print (2)

For reference, answer to this question with a hard coded solution:
; this will earn you 0 points because it is hard coded
; this is provided to give you a sense of what we are
; looking for and how the Output LCD should behave
; when we run your code
; this also demonstrates how to print to Output LCD
1di rl6, 255 ; set rl6 to all high bits
out 17, rlé ; all high bits IO 17 for output
1di r17, O ; lst number
out 18, rl1l7 ; print Ist number
1di rl1l7, 1 ; 2nd number
out 18, rl7 ; print 2nd number
1di r17, 1 ; 3rd number
out 18, rl7 ; print 3rd number
1di rl17, 2 ; 4th number
out 18, rl7 ; print 4th number
1di rl17, 3 ; 5th number
out 18, rl17 ; print 5th number
1ldi rl1l7, 5 ; 6th number
out 18, rl7 ; print 6th number
1ldi rl1l7, 8 ; 7th number
out 18, rl7 ; print 7th number
1di r17, 13 ; 8th number
out 18, rl7 ; print 8th number
1di rl1l7, 21 ; 9th number
out 18, rl17 ; print 9th number
1di rl1l7, 34 ; 10th number
out 18, rl7 ; print 10th number
1di rl1l7, 55 ; 11lth number

out
1di
out
1di
out
1di
out
1di
out
halt

Sample answer:

rl6e used for
rl7 used for
rl8 used for
rl9 used for
r20 used to
r21l used for

14

.
14

14
14
’

14

1di rle,
1di r17,
1di r18,
1di r19,
1di r20,
out 17,
out 18,
whileLoop:
cp rl7, rlé
brsh halt
out 18,
mov r21,
add rl9,
mov rl8,
inc rl7

rjmp whileLoop

halt:
halt

15. Repeat Homework 2 Question 12, but this time use assembly language instead of Python,
and go from 32 (due to overflow and wrap around) to 50 instead.

15

1

0

1

255
r20
rl8

rl9
rl9
rl8
r2l

18, rl7 ; print 11th number

rl7, 89 ; 12th number
18, rl7 ; print 12th number
rl7, 144 ; 13th number
18, rl7 ; print 13th number
rl7, 233 ; 14th number
18, rl7 ; print 14th number
rl7, 121 ; 15th number, wrap around,
18, rl7 ; print 15th number
; end program

n
counter
a
b
initialize IO 17
temp
; n =15
; counter =1
; a=20
; b=1

; set r20 to all high bits

377-256=121

; print(a), all high bits IO 17 for output

; print(a), actually display a

; while (counter<n):, while loop label to jump to

; while (counter<n), compare counter to n
; while (counter<n), exit loop if counter >= n

; print (b)

; temp = b

; b=Db + a

; a = temp

; counter = counter + 1
; end of while loop

; halt, end of program

(6)

Annotate your code with comments, it is worth point(s).

Use the browser-based simulator to write and submit.

You may have to write your own multiply by doing multiple adds.

You may have to write your own divide by using a quotient counter, and subtracting the
divisor from the dividend while the dividend is greater than the divisor.

For reference, Homework 2 Question 12:
Say you wanted to print out the Celsius equivalent for all integer Fahrenheit

temperatures from 32 degrees F to 50 degrees F. Write a program to print out this conversion
information. The pseudocode for implementing this is given below.

The equation for converting Fahrenheit (F) to Celsius (C) is: C — (F - 32) * %

iii.
iv.

V.

Vi.

Set F’s initial value to 32 (lower bound)

While F is less than or equal to 50 (upper bound)
Convert Fahrenheit to Celsius.
Print the number of degrees in Fahrenheit
Print the number of degrees in Celsius
Increment F

For reference, answer to Homework 2 Question 12:
F = 32
while(F <= 50):

C = (F-32) *5 /9

print (F)

print (C)

F=F+1

Sample output:

32
0
33
0
34
1
35
1
36
2
37
2
38
3
39

3
40
4
41
5
42
5
43
6
44
6
45
7
46
7
47
8
48
8
49
9
50
10

Sample answer:

; rlée is used
; rl7 is used
; rl8 is used
; rl9 is used
; r20 is used
; r2l is used
; r22 is used
1di r21, 51
1di r22, 9
1di rl6,32
1di rl17, 255
out 17, rl7
whileloop:
+—epi—r1655%
cp rl6e, r21
brsh halt
mov rl8, rlé6

for F

to initialize IO 17

for F-32

for (F-32)*5

for C, (F-32)*5/9

for 51, since cpi is removed

for 9, since cpi is removed

; r2l = 51 (constant)

; r22 = 9 (constant)

; F = 32

; set rlé to all high bits

; all high bits IO 17 for output
; label for while(F <= 50):
+—whilte(F<51):+F——~compareFto 5%
; while(F < 51):, compare F to 51
; while(F < 51):, break loop and halt if F >= 51
; rl8 = F

subi rl8, 32 ; rl8 F - 32

1di r19, O ; rl9 = 0, could have optimize multiplication better
add rl19, ril8 ; rl9 = (F - 32) * 1

add rl19, ril18 ; rl9 = (F - 32) * 2

add rl19, rl18 ; rl9 = (F - 32) * 3

add rl19, ril8 ; rl9 = (F - 32) * 4

add rl19, rl8 ; rl9 = (F - 32) * 5, our dividend

1di r20, O ; r20 = 0, this is our quotient counter
divideLoop: ; label to loop while dividend >= divisor
+—epi—+19—9 +—dividend—>=9—2

cp rl9, r22 ; dividend >= 9 ?

brsh incrementQuotient ; if so, then branch to incrementQuotient
; elseC= (F-32) x5/ 9

out 18, rlé6 ; print (F)

out 18, r20 ; print (C)

inc rlé ; F=F + 1

rjmp whileLoop ; end of while loop, jump back to check condition again
incrementQuotient: ; label to inc quotient and subtract from dividend
subi rl1l9, 9 ; subtract divisor, 9, from dividend

inc r20 ; increment quotient counter

rjmp divideLoop; end of incrementQuotient

; jJump to check dividend >= divisor again
halt: ; label to jump to if F >= 51
halt ; halt to end program

