Name:

netlD: @wisc.edu

Exam 2

CS/ECE 252 Section-2 (MWF 11:00)
Monday, October 26

Write legibly, especially for your name and netID.

Read all questions carefully.

Showing work for number calculations is optional for partial credit if the final answer wrong.
Annotating/commenting code for code snippets is required for full credit.

Good luck./! <- this 1s the version number. “Good luck.” is version A. “Good luck!” is version B.
Version C is the Exam 2 review worksheet.

1.

Convert decimal numbers to/from snsigned magnitude and 2’s complement using 8-bits by filling out the

table below. Ignore the underscores, they are just there for readability. 3)
Decimal
Signed Magnitude 2’s complement
Binary Hexadecimal Binary Hexadecimal
-H)*32+16+8 Ob1011 1010 0xBA Inv and add 1 -> 0xC6
+2)=-58 1100 0110 (unsigned) 0xBA
(unsigned) 186 (unsigned)
0 1011_1010
-128+ 64 +8+4 + removed Ob1100 1101 0xCD
1=-51
Decimal
Signed Magnitude 2’s complement
Binary Hexadecimal Binary Hexadecimal
-H)*32+8+2+ 0b1010_1011 0xAB Inv and add 1 -> 0xD5
1)=-43 1101_0101 (unsigned) 0xAB
(unsigned) 171 (unsigned)
0_1010_1011
-128+ 64 +8+4 + removed Ob1100 1110 0xCE
2=-50
Decimal
Signed Magnitude 2’s complement
Binary Hexadecimal Binary Hexadecimal
-113 -113 =(-1) * (64 + 0xF1 113=64 + 32+ 16 0x8F
32+16+1)= +1=0b0111_0001
Ob1111_0001 -113 =
0b1000_1111
(-1)*(64+8+4+ Ob1100 1110 0xCE removed
2)=-78
-128 +32+16+8 removed Ob1011_1010 0xBA

+2=-70

2. Convert 83.625/52.375/121.78125 from decimal to unsigned fixed point notation.

83/2 =

41/2
20/2
10/2

5/2

2/2 =

1/2

0.625/0.5000 =
0.125/0.2500 =
0.125/0.1250 =
1010011.101

83.62

52/2
26/2
13/2

6/2

3/2 =
1/2 =

5

41
20
10
5
2
1
0

26
13
6
3
1
0

R1
R1
RO
RO
R1
RO
R1

0.375/0.50000
0375/0.25000
0.125/0.12500

52.375 =
121/2 = 6
60/2 = 3
30/2 =1
15/2 =
7/2 =
3/2 =
1/2 =
0.78125/0.
0.28125/0.
0.03125/0.
0.03125/0.
0.03125/0.

121.78125

1 RO.125
0 RO.125
1 RO

RO
RO
R1
RO
R1
R1
0 RO.375
1 RO.125
1 RO.O
110100.011
0 R1
0 RO
5 RO
7 R1
3 R1
1Rl
0 R1
50000 = 1 R0O.28125
25000 = 1 RO.03125
12500 = 0 RO.03125
06250 = 0 R0O.03125
03125 = 1 RO
= 1111001.11001

2

3. What is the decimal value of the floating point number ECE00000 / ACE00000 / OECE2520? You do not
need to compute the exact answer, just set up the formula in decimal. 3)

ECE00000
= 1110_1100_1110_0000_0000_0000_0000_0000
=1 11011001_11000000000000000000000
sign =1
exponent = 128 + 64 + 16 + 8 + 1 = 217
fraction = .11000000000000000000000 = 0.5 + 0.25 = 0.75
(_ l)sign % 2exponent—127 % (1 + fmction)
= G—DIXZZW_U7X(1+-075) # getting to this step is full credit
= (1) x2"x1.75
—2.166E27

ACE00000

= 1010_1100_1110_0000_0000_0000_0000_0000

=1 01011001_11000000000000000000000

sign =1

exponent = 64 + 16 + 8 + 1 = 89

fraction = .11000000000000000000000 = 0.5 + 0.25 = 0.75

(_ l)sign % 2exponent—127 ~ (1 + fl"ClCtiOl’l)
= (-1)'x2¥¥x(1 + 0.75) # getting to this step is full credit
= (1) x27¥x 1.75
= —6.366E—-12

O0ECE2520

= 0000_1110_1100_1110_0010_0101_0010_0000

= 0_00011101 10011100010010100100000

sign = 0

exponent = 16 + 8 + 4 + 1 = 29

fraction = .10011100010010100100000 =~ 0.5 + 0.0625 + 0.03125 +
0.015625 + ... = 0.61051

(_ l)sign % 2exponent—127 % (1 + fmction)
= G—UOXZE_H7X(1+-06105D # getting to this step is full credit
=1x2%x1.61051
=5.08187E—-30

4. Assuming two’s complement notation, perform the following calculations using 8-bits two’s complement

notation. Express your answer in two’s complement binary. Due to time constraints, it is not required to
convert your answer to decimal to check. 0.5+1.5)

11 11
a. 10101010 (-86)
+01100110 +(102)

b.

00010000 (16)

10101010 (-86)
-10011101 -(-99)
00001101 (13)

or equivalently by taking the 2’'s complement and then adding

11 1
10101010 (-86)
+01100011 +(99)
00001101 (13)

1111

10101010 (-86)
+01011001 +(89)
00000011 (3)

11101010 (-22)
~-10100110 -(-90)
01000100 (68)

or equivalently by taking the 2’'s complement and then adding

1111 1
11101010 (-22)
+01011010 +(90)
01000100 (68)

1111

10101010 (-86)
+11111001 +(-17)
10100011 (-93)

11001100 (-52)
-10110110 -(-74)
00010110 (22)

or equivalently by taking the 2’'s complement and then adding

1111 1
11001100 (-52)
+01001010 +(74)
00010110 (22)

5. Fill in the blanks to convert the following piece of code from Python to AVR assembly. “)
n=1
s =0
b =20
while (n<=5)

S = s +n

1f(s<3):

b=Db+1
else:
b=Db+ 2

n=n+1
; rle is used for n
; rl7 is used for s
; rl8 is used for b
; up to you to figure out the rest of the register usage
1di rle, 1 ; rle = n =1
1di r17, O ; rl7 = s =0
1di r18, O ; rl8 = b =0
whileLoopBegin: ; label for while (n<=5):
1di r19, 6 ; which immediate value to load for compare?
cp rlé, rld ; which 2 registers to compare?
brsh whilelLoopEnd ; which label to jump to? or 9
add rl7, rle ; s = s + n
1ldi r20, 3 ; load 3 for compare immediate
cp rl7, r20 ; 1f (s>=3):
brsh elseBlockBegin ; then jump to else block
inc rl8 ; which register to increment?
rijmp ifElseEnd ; which label to jump to?; 1
elseBlockBegin: ; label for else block
subi r18, -2 ; which operation?
; and if that operation takes 2 operands, then what is the second operand?
ifElseEnd: ; label for end of if-else block
inc rlo ; n=n + 1
rjmp whileLoopBegin ; jump to check condition of while loop again
whileLoopEnd: ; label for end of while loop
halt ; halt to end program
n =2
s =0
b =20

while (n<=6) :
S = s +n

b=Db+ 1
else:
b =Db+ 3

; rlo is used for n
; rl7 is used for s
; rl8 is used for b
; up to you to figure out the rest of the register usage

1di rle, 2 ; rle = n = 2

1di r17, 0O ; rl7 = s =0

1di r18, 0 ; rl8 = b =0

whileLoopBegin: ; label for while (n<=56) :

ldi r19, 1 ; which immediate value to load for compare?
cp rl6, rl9 ; which 2 registers to compare?
brsh whileLoopEnd ; which label to jump to?

add rl7, rleo ; S = s +n

1di r20, 3 ; load 3 for compare immediate
cp rl7, r20 ; 1f (s>=3):

brsh elseBlockBegin ; then jump to else block
inc rxl18 ; which register to increment?
rijmp ifElseEnd ; which label to jump to?; or 1
elseBlockBegin: ; label for else block

subi r18, -3 ; which operation?

; and if that operation takes 2 operands, then what is the second operand?

ifElseEnd: ; label for end of if-else block
inc rlé ; n=n + 1
rjmp whileLoopBegin ; jump to check condition of while loop again
whileLoopEnd: ; label for end of while loop
halt ; halt to end program
x = 20
y = 30
n =1
s =0
while (n<5) :
S = s +n
if (x<=y):
X =x+y
else:
y = X - Yy

; rl6 is used for x

; rl7 is used for y

; rl8 is used for n

; rl9 is used for s

; up to you to figure out the rest of the register usage
1di rle, 20 ; rle = x = 20

1di r17, 30 ; rl7 =y = 30

1di r1s, 1 ; rl8 = n 1

1di r19, O ; rl8 = s =0

whileLoopBegin: ; label for while (n<5):

1di r22, 5 ; which immediate value to load for compare?
cp rl8, r22 ; which 2 registers to compare?

brsh whileLoopEnd ; which label to jump to?

add rl1l9, rl18 ; S = s + n

mov r20, xl17 ; which register to move/copy to r20?
inc r20

cp rlé, r20 ; which 2 registers to compare?

brsh elseBlockBegin
add rl6, rl7
rjmp ifElseEnd

if x > y, then jump to elseBlockBegin
else fall through and execute if block;

Jump to end of if-else block

X = X t Yy

elseBlockBegin: ; label for else block

mov r2l1, rl7

mov rl7, rlé6

sub rl7, r21 ; some statement (s)

ifElseEnd: ; label for end of if-else block
inc rl8 ; n=n + 1

rjmp whileLoopBegin ; jump to check condition of while loop again

whileLoopEnd: ; label for end of while loop

halt ; halt to end program

6. Write 4 code snippets to finish the AVR assembly program that eor (exclusive-or) the first 10 numbers in
the RAM address labeled “array”, and print the final result to output LCD. For simplicity, you can assume
that all 10 numbers are stored in the same HI memory pointer. In other words, the LO memory will not
overflow when incrementing it to loop through all 10 number.

Write 4 code snippets to finish the AVR assembly program that add (ignoring overflow) the first 10
numbers in the RAM address labeled “array”, and print the final result to output LCD. For simplicity, you
can assume that all 10 numbers are stored in the same HI memory pointer. In other words, the LO memory
pointer will not overflow when incrementing it to loop through all 10 number. “4)

You can initialize the values at label “array” to whatever you want.

Annotate your code with comments for full credit.

.byte (array) 1,2,5,-7,-4,-6,-9,8,1,-3
1ldi rle, 10 ;

; assembler directive to load RAM
rlo is counter for first 10 numbers

; write a code snippet to initialize answer
; YOUR 1st CODE SNIPPET BELOW HERE
1di r17, O ; rl7 holds the results

; load the address of the "array" in X (X = r26 + 256*r27)

1di r27, hi8(array) ; set up HI memory pointer
1di r26, lo8(array) ; set up LO memory pointer
loopBegin: ; label to loop

; write code snippet to complete computation portion of loop
; YOUR 2nd CODE SNIPPET BELOW HERE

1d r18, X ; load from X to rl8

eor rl7, rl8 ; eor or add, depending on version
inc r26 ; increment LO memory pointer

dec rlb6 ; decrement counter

; write code snippet to finish flow control of loop

; YOUR 3rd CODE SNIPPET BELOW HERE

; 1di & cp can also be used here

; SAMPLE SOLUTION 1

brne loopBegin ; continue loop if not done with all 10 numbers
; else fall through and print output to LCD

; SAMPLE SOLUTION 2

; breq printToOutputLCD; break loop if done with all 10 numbers

; rjmp loopBegin ; else go back to loop again

; SAMPLE SOLUTION 3

; 1di r20, 0; break loop if done with all 10 numbers

; cp rlée, r20

; brne loopBegin ; continue loop if not done with all 10 numbers
; else fall through and print output to LCD

; SAMPLE SOLUTION 4
; 1di r20, 0; break loop if done with all 10 numbers

; cp rlée, r20

; breq printToOutputLCD; break loop if done with all 10 numbers

; rjmp loopBegin ; else go back to loop again

printToOutputLCD: ; label to jump to after done with all 10 numbers

; write code snippet to display the answer to output LCD

; YOUR 4th CODE SNIPPET BELOW HERE

1di r1l8, 255 ; set rl8 to all high

out 17, rl8 ; set IO reg 17 to all high for output
out 18, rl7 ; display value of rl7 to output LCD

7. Fill in the contents of the register file (only r0O-r3 in this case) and stack (including relevant addresses) after

the following code finishes executing: (2 for registers + 1 for memory)
push rl
push r2
push r3
pop 10
pop rl
pop r3
add rl 13
Structures before execution:
RAM
397 0
398 0
Register File 399 0
10 0 400 10
rl 1 401 20
2 2 Stack Pointer 402 30
3 4 399 403 40
Fill in your answers below, showing the structures after execution:
RAM
397 4
398 2
Register File 399 1
10 4 400 10
rl 3 401 20
2 2 Stack Pointer 402 30
3 1 399 403 40

8. Explain how function (subroutine) call and return works in AVR. 2)
rcall first pushes pc+1 on to the stack, then sets the PC to the PC+offset.
Ret pops the PC+1 off the stack to the PC.
1 point for control flow behaviour. 1 point for pushing/popping PC+1

Consider the code on the handout for problems 9-11

9. Describe what the function is doing 1)

This function is doing a divide operation (iteratively subtracting and counting how many times it
has subtracted until below the divisor)

10. Is this piece of code using caller or callee saved registers? 1)

Callee saved

11. How would you modify the code to use the other method of saving registers? You can either describe it or
write the code snippet. 2)

The push and pop of r25 in the function should be removed. r25 should be pushed before rcall, and
popped after.

12. For this question, we will be asking you to write the missing function in the following piece of code. This
function is meant to reverse the contents of an array, that is, if an array was [4,5,6], the output of the
function would be [6,5,4]. For writing this function, there are a few requirements:

- Any registers or values that are modified outside of the array should be restored before the function
returns

- The function assumes that X is set prior to the function being called, and is set to the location of the
first element of the array

- The function assumes that r16 contains the length of the array, that is, the amount of elements in the
array.

Hint: It might be beneficial to think of the function in two parts: reading the contents of the array, and then
storing the array back in memory in reverse order.
(2 pts extra credit)

1di r31, 136
out 61, r3l
1di r31, 19
out 62, r3i
rjmp program

function:

;assume the size of the array is stored in ri6
sand that X is set to the beginning of the array
[The code for your function]

program:

;Store the values 4, 5, and 6 in addresses 500, 501, and 502
1di r27, 1

1di r26, 244

1di r25, 4

st X, r25

inc r26

1di r25, 5

st X, r25

inc r26

1di r25, 6

st X, r25

dec r26

dec r2e

;Store the size of the array
1di ri16, 3

rcall function

Sample solution:

1di r31, 136

out 61, r3l

1di r31, 19

out 62, r3l

rjmp program

function:

sassume the size of the array is stored in ri6
sand that X is set to the beginning of the array
push ri7

push ri8

push ri19

1di ri8, ©

mov ril19, r26
begin_first_while:

cp ri18, rieé

breq done_first_while
1d r17, X

push ri7

inc ri8

inc r26

rjmp begin_first_while
done_first_while:

mov r26, ril9

1di ri18, ©
begin_second_while:

cp ri18, rieé

breq done_second_while
pop ri7

st X,ri17

inc ri8

inc r26

rjmp begin_second_while
done_second_while:

mov r26, ril9

pop ri9

pop ris8

pop ri7

ret

program:

;Store the values 4, 5, and 6 in addresses 500, 501, and 502
1di r27, 1

1di r26, 244

1di r25, 4

st X, r25

inc r2e6

1di r25, 5

st X, r25

inc r2e

1di r25, 6

st X, r25

dec r2e6

dec r26

;Store the size of the array
1di ri1e6, 3
rcall function

