Homework 4 - Due at Lecture on Monday, March 5

Primary contact for this homework: Kamlesh Prakash [kprakash2@wisc.edu]
You must do this homework in groups of two. Please hand in ONE copy of the homework that lists the section number, full names (as they appear in Learn@UW) and UW ID numbers of all students. You must staple all pages of your homework together to receive full credit.

Problem 1 (6 points)
A logic circuit has two 2-bit unsigned binary numbers X[1:0] and Y[1:0] as the inputs and it has two 1-bit outputs. One of the outputs is EQUAL and the other is XGTY. The EQUAL output is true when X[1:0]=Y[1:0] and the XGTY output is true when X[1:0] > Y[1:0].

a) Write a truth table for these two functions.
b) Determine the needed logic equations.
c) Draw the Gate level circuit for EQUAL using AND, OR and NOT gates.

Problem 2 (4 points)
a) Using only one 1-to-2 decoder and one 2-to-1 multiplexer, draw a circuit that always outputs a 0.
b) Using only one 1-to-2 decoder and one 2-to-1 multiplexer, draw a circuit that always outputs a 1.
Note: Inputs cannot be set to constant values (0, 1) and no other gates should be used. Use decoders and mux as blocks.
Hint: Input to the 1-to-2 decoder is some variable “A” and the outputs of the decoder are fed as inputs to the 2-to-1 mux.

Problem 3 (3 points)
Given that a certain machine has a clock cycle period of 0.5ns and takes 2 cycles to execute an instruction, find the following:

a) Clock Frequency
b) Instructions per second
c) Suppose we have a program that has 500 instructions. How long will it take the program to run?

Problem 4 (4 points)
Suppose a 64-bit instruction takes the following format:

| OPCODE | SR | DR | IMM |

There are 126 opcodes and 32 registers.

a. What is the minimum number of bits required to represent an OPCODE?
b. What is the minimum number of bits required to represent a register?
c. What is the maximum number of bits that can be used to represent the immediate field (IMM)?
d. If the immediate (IMM) uses two’s complement representation, what is its maximum range of values?
Problem 5 (6 points)
a. Draw a state diagram for a finite state machine that outputs 1 when it recognizes the pattern "100110". For instance, if we have an input of "1001100110" we should get an output of "0000010001". (This means that for the last 6 bits whenever it sees the pattern it outputs 1).
b. How many flip-flops (storage elements) will be needed to implement the finite state machine designed in your answer to part a?

Problem 6 (4 points)
Draw a state machine that should output a 1’b1 if the number of 1’s that have appeared on the input (including the current input bit) is a multiple of 2 or a multiple of 3.

Problem 7 (3 points)
Prove that a NAND gate, by itself, is logically complete. (Hint: Construct a logic circuit that performs the AND function, a logic circuit that perform the OR function and a logic circuit that perform the NOT function. Use only NAND gates in these three logic circuits.)