Homework 2 - Due at Lecture on Wed, Feb 8th

Primary contact for this homework: Newsha Ardalani [newsha at cs dot wisc dot edu]
Instructions: You must do this homework in groups of two. Please hand in ONE copy of the homework that lists the section number, full names (as appear in Learn@UW) and UW ID numbers of all students. You must staple all pages of your homework together to receive full credit

Question 1. (3 points)

- a. How many distinct decimal values (base-10) can be represented using 9 decimal digits? We have 9 positions and in each position 10 different digits (0, 1, ..., 9) can sit, so the answer is 10⁹
- b. How many distinct hexadecimal values (base-16) can be represented using 8 hexadecimal digits?
 - We have 8 positions and in each position 16 different digits (0,1, ..., F) can sit, so the answer is 16^8
- c. How many distinct binary values (base-2) can be represented using 32 binary digits (bits)? We have 32 positions and in each position 2 different digits (0 or 1) can sit, so the answer is 2³²

Question 2. (2 points)

Find the 2's complement of the following binary numbers:

a. 0100 1010 1011 0110b. 1001 0000 0111 0000

Question 3. (3 points)

a. Assume that there are about 200 students in your class. If every student is to be assigned a unique bit pattern, what is the minimum number of bits required to do this?

```
128 (2^7) < 200 < 256 (2^8)
```

With 7 bits can represent only 128 different students, so we need at least 8 bits to assign a unique bit pattern to each student.

b. How many more students can be admitted to the class without requiring additional bits to represent each student's unique bit pattern?

```
256 - 200 = 56
```

c. How many students need to drop the course if we have only 7 bits to represent each student uniquely?

```
200 - 128 = 72
```

Question 4. (2 points)

Compute the following:

```
a. NOT(1101) AND NOT(1000)
NOT(1101) = 0010
NOT(1000) = 0111
0010 AND 0111 = 0010
b. NOT(1001 OR (1010 AND 1101))
```

(1010 AND 1101) = 1000 (1001 OR 1000) = 1001NOT(1001) = 0110

Question 5. (4 points)

The binary number 1110 1000 is a string of 0s and 1s that can be interpreted differently depending on its data type. Please find the decimal value of the above number for the following data types:

```
a. An unsigned integer 1110\ 1000 = 2^7 + 2^6 + 2^5 + 2^3 = 128 + 64 + 32 + 8 = 232b. A signed-magnitude integer 1110\ 1000 = -(0110\ 1000) = -(2^6 + 2^5 + 2^3) = -104
```

c. A 1's complement integer $1110\ 1000 = -(0001\ 0111) = -(2^4 + 2^2 + 2^1 + 2^0) = -23$

d. A 2's complement integer $1110\ 1000 = -(0001\ 1000) = -(2^4 + 2^3) = -24$

Question 6. (6 points)

The value "-64" can be represented by strings of 0s and 1s in many different ways depending on its data type. Please show its **hexadecimal** representation for the following data types.

a. An 8-bit unsigned integer

b. An 8-bit signed-magnitude integer $1100\ 0000 = xC0$

An θ hit 1's complement into

c. An 8-bit 1's complement integer 1011 1111 = xBF

d. An 8-bit 2's complement integer $1100\ 0000 = xC0$

e. An ASCII string (Only represent the characters between the quotation marks and assume it as a null terminated string)

```
- = x2D6 = x36
```

4 = x34

Number: 2D3634

f. A 32-bit IEEE floating point number

Question 7. (6 points)

a. What is the largest positive value one can represent with a 7-bit 2's complement number? Write your result in binary and decimal.

```
01111111 = 2^6 - 1 = 63
```

- b. What is the largest positive value one can represent with an n-bit 2's complement number? $0111...111 = 2^{n-1}$ -1
- c. What is the greatest magnitude negative value one can represent with a 7-bit 2's complement number? Write your result in binary and decimal.

```
1000000 = -2^6 = -64
```

d. What is the greatest magnitude negative value one can represent with a n-bit 2's complement number?

```
1000...000 = -2^{n-1}
```

e. What is the largest positive value one can represent with a 7-bit 1's complement number? Write your result in binary and decimal.

```
01111111 = 2^6 - 1 = 63
```

- f. What is the largest positive value one can represent with an n-bit 1's complement number? $0111...111 = 2^{n-1} 1$
- g. What is the greatest magnitude negative value one can represent with a 7-bit 1's complement number? Write your result in binary and decimal.

```
1000000 = -(01111111)_{1's \text{ complement}} = -(2^6 - 1) = -63
```

h. What is the greatest magnitude negative value one can represent with an n-bit 1's complement number?

```
1000...000 = -(0111...111)_{1's \text{ complement}} = -(2^{n-1} - 1)
```

i. What is the maximum unsigned value one can represent with 7 quad digits? (quad number

system is base-4 where only the digits 0, 1, 2 or 3 are legal)

$$(3333333)_4 = 3*4^6 + 3*4^5 + 3*4^4 + 3*4^3 + 3*4^2 + 3*4^1 + 3*4^0$$

= $3*(4^6 + 4^5 + 4^4 + 4^3 + 4^2 + 4^1 + 4^0)$
= $4^7 - 1$

j. What is the maximum unsigned value one can represent with n quad digits?

$$(333...333)_4 = 3*4^{n-1} + 3*4^{n-2} + ... + 3*4^1 + 3*4^0$$

= 3*(4ⁿ⁻¹ + 4ⁿ⁻² + ... + 4¹ + 4⁰)
= 4ⁿ - 1

Question 8. (2 points)

Give an example of an *integer* that can be represented in floating point format (32-bit IEEE format), but cannot be represented as a 32-bit two's complement integer. Show its hexadecimal representation.

The biggest 2's complement integer that can be represented with 32 bits is 2^{31} -1, so any integer number greater than 2^{31} -1, but less than 2^{128} , is the answer to this question. so 2^{31} , 2^{31} +1, 2^{31} +2 and 2^{32} are some examples.

Question 9 (2 points)

- a. What conditions indicate overflow has occurred when two 2's complement numbers are added?
 - 1. When 2 positive values are added and the sum's MSB is 1
 - 2. When 2 negative values are added and the sum's MSB is 0
- b. Why does the sum of a negative 2's complement number and a positive 2's complement number never generate an overflow?

Because the sum result would be a number more than the negative number and less than the positive number, so it is in the range of representable numbers, so there is no overflow.