Homework 3 - Due at Lecture on Fri, Feb 24

Primary contact for this homework: Rebecca Lam [rjlam@cs.wisc.edu]

You must do this homework in groups of **two**. Please hand in ONE copy of the homework that lists the **section number**, **full** names (as they appear in Learn@UW) and **UW ID** numbers of all students. You must **staple** all pages of your homework together to receive full credit

Problem 1 (2 points)

- a. What is the decimal equivalent of the following IEEE floating point number: **0x42F74000** 123 625
- b. What is the 32-bit IEEE floating point representation of the decimal number -629.375? 0xC41D5800

Problem 2 (4 points)

Given the following transistor level circuit:

a. Fill out the truth table for Z

A	В	Z
0	0	0
0	1	1
1	0	0
1	1	0

b. What is Z in terms of A and B Z = NOT(A) AND B

Problem 3 (4 points)

Given the logic equation Z = A AND NOT(NOT(A) OR B)

a. Fill out the truth table for Z

A	В	Z
0	0	0
0	1	0
1	0	1
1	1	0

b. Draw the gate-level circuit for Z using 2-input AND/OR gates and NOT gates

Problem 4 (4 points)

a. Fill out the truth table for Z

A	В	Z
0	0	0
0	1	1
1	0	1
1	1	1

b. What is Z in terms of A and B

$$Z = A OR B$$

Problem 5 (4 points)

Given the logic equation Z = NOT(A OR (NOT(A) AND B))

a. Fill out the truth table for \hat{Z}

A	В	Z
0	0	1
0	1	0
1	0	0
1	1	0

b. Draw the transistor-level circuit for Z using a **minimal** number of 2-input NAND/NOR gates and NOT gates

Problem 6 (6 points)

Suppose A, B, and C are inputs to logic function Z with the following truth table:

A	В	C	Z
---	---	---	---

0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

a. Draw the gate-level circuit using NOT gates and 3-input AND and OR gates.

b. Convert the circuit of part a into one that uses only NAND gates.

Problem 7 (2 points)

Suppose A, B, and C are inputs to a logic function that outputs Z = 1 when the total number of 1s among the inputs is exactly two.

Fill out the truth table for Z:

A	В	C	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Write the logic expression for Z (e.g. Z = A AND B)
Z = (NOT(A) AND B AND C) OR (A AND NOT(B) AND C) OR (A AND B AND NOT(C))

Problem 8 (2 points)

If the number of address bits in memory is increased by 4 bits and the addressability is halved, how is the size of memory affected?

Size of memory = $2^{(\# address bits)}$ * addressability Thus, the new size of memory is 2^4*2^{1} times the old size -> 2^3 = 8 times larger than before