
CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Professor Karthikeyan Sankaralingam

TAs: Rebecca Lam, Suriyha Balaram Sankari, Kamlesh Prakash, Newsha Ardalani, and Yinggang

Huang

Examination 3

In Class (50 minutes)

Wednesday, Mar 28, 2012

Weight: 17.5%

NO: BOOK(S), NOTE(S), CALCULATORS OF ANY SORT.

This exam has 10 pages, including a blank page at the end. Plan your time carefully, since some

problems are longer than others. You must turn in pages 1 to 8.

LAST NAME:

FIRST NAME:

SECTION:

CAMPUS ID#

EMAIL ID

1

Question Maximum Points Points

1 3

2 3

3 4

4 6

5 4

6 6

7 4

Total 30

2

Problem 1 (3 Points)

a) What is the minimum value we can represent as an immediate value within an LC-3 ADD
instruction?

-(2^4) = -16

b) Write ONE LC-3 machine language instruction that clears the contents of R2.

 0101 010 010 1 00000 (AND R2, R2, #0)

c) Explain when the following instruction differs from a NOP (NO OPERATION)

0001 0010 0110 0000 Add R1, R1, #0

Differs from a NOP in that it sets the Condition codes.

Problem 2 (3 Points)

Please enter the missing values in the following LC-3 machine language program to implement a 2 input
OR- function. Assume that the 2 inputs are stored in registers R0 and R1. The final output should be stored
in register R2. (Adding comments to each machine language instruction will assist in awarding partial
credit).

Instruction Comments

1001 0000 0011 1111 R0 <- NOT(R0)

 1001 0010 0111 1111 R1 <- NOT(R1)

 0101 0100 0100 0000 (OR) 0101 0100 0000 0001 R2 <- R1 (AND) R0

1001 0100 1011 1111 R2 <- NOT(R2)

3

Problem 3 (4 Points)

For the following LC-3 program, answer the questions below.

Address Instruction Comment

0x3000 0101 0100 1010 0000 R2 <- 0

0x3001 0001 0010 0111 1110 R1 <- R1 - 2

0x3002 0001 0010 0111 1011 R1 <- R1 - 5

0x3003 0101 0010 0100 0001 R1 <- R1 AND R1

0x3004 0000 0000 0010 1101 NOP

0x3005 0001 0010 0111 1111 R1 <- R1 - 1

0x3006 0000 1000 0000 0010 BRn 0x3009

0x3007 0001 0100 1010 0001 R2 <- R2 + 1

0x3008 0000 1111 1111 1000 BRnzp 0x3001

0x3009 1111 0000 0010 0101 HALT

a) What is the minimum possible initial value of R1 that cause the final value in R2 to be 6?

 48

b) If the initial value of R1 is 0x31, what is the final value of R2?

 6

c) If the initial value of R1 is 0x7, what is the final value of R2?

 0

4

Problem 4 (6 Points)

We are about to execute the following program.

Address Instruction Comment

0x3000 0010 0000 0000 0110 LD R0, 0x6

0x3001 0110 0010 1101 1101 LDR R1, R3, 0x1D

0x3002 1010 0100 1111 0000 LDI R2, 0xF0

0x3003 1110 0110 0000 1010 LEA R3, 0xA

0x3004 1111 0000 0010 0101 HALT

What are the final values of R0, R1, R2, R3 after the execution of program? The state of the machine before
the program starts is given below. (Adding comments to each machine language instruction will assist in
awarding partial credit).

Register Initial Contents Final Value (in HEX)

R0 0x200E 0xBAA0

R1 0x200E 0x3012

R2 0x3001 0x2331

R3 0x3001 0x300E

Address Memory Contents Address Memory Contents

0x158E 0x0012 0x300E 0x92FE

0x200E 0x3258 0x301D 0x2121

0x2257 0x0000 0x301E 0x3012

0x2FFF 0x4567 0x30F3 0x3111

0x3002 0xA4F0 0x3111 0x2331

0x3006 0xABEB 0xABCD 0x1580

0x3007 0xBAA0 0xABDB 0x0001

5

Problem 5 (4 Points)

We are about to execute the following program.

Address Instruction Comment

0x3200 1110 0000 0000 0000 LEA R0, 0

0x3201 1110 1101 1111 1110 LEA R6, -2

0x3202 0000 1111 1111 1111 BR nzp 0x3002

0x3203 1111 0000 0010 0101 HALT

Determine the values of PC, R0 and R6 at the end of each successive instruction. The values in PC, R0 and
R6 are initially as shown in the table below (i.e. before the start of the execution of the first instruction).

a) Fill in the missing values in the table below. (Adding comments to each machine language instruction
will assist in awarding partial credit).

Instruction Count PC R0 R6 Next PC

1 0x3200 0xFEED 0x3204 0x3201

2 0x3201 0x3201 0x3204 0x3202

3 0x3202 0x3201 0x3200 0x3202

 b) Is there a problem with the instruction at address 0x3202? Explain why or why not.

 Infinite loop of executing the branch instruction at 0x3202 and the program never halts.

6

Problem 6 (6 Points)
R4 = 0, R2 = 0, R3 = 0

R2 = -10

R2 = R2 + 1

HALT

R1 = 0
True

If R2 > 0

False

R3 = R3 + 1

R4 = R3 + R4

a) Please enter the missing values in the table in accordance with the flow chart.

Address Instructions Comments

0x3000 0101 1001 0010 0000 Clearing the contents of R4

0x3001 0101 0100 1010 0000 Clearing the contents of R2

0x3002 0101 0110 1110 0000 Clearing the contents of R3

0x3003 0001 0100 1011 0110 R2 <- R2 - 10

0x3004 0001 0100 1010 0001 Incrementing contents of R2

0x3005 0000 0010 0000 0011 BRp 0x3009

0x3006 0001 0110 1110 0001 Incrementing contents of R3

0x3007 0001 1001 0000 0011 (OR) 1000 1100 0100 R4 <- R4 + R3

0x3008 0000 1111 1111 1011 BRnzp 0x3004

0x3009 0101 0010 0110 0000 Clearing the contents of R1

0x300A 1111 0000 0010 0101 HALT

b) What is the final value stored in register R4 after the completion of the above program?

 55

7

Problem 7 (4 Points)

An LC-3 program starts execution at x3000. During the execution of the program, a snapshot of all 8
registers were taken at different times as shown below: before the program starts execution, after
execution of instruction 1, after execution of instruction 2, after execution of instruction 3 and after
execution of instruction 4. If we keep track of all values loaded into the MAR, MDR and PC as the program
executes, we will get a sequence that starts as shown in the tables. Such a sequence of values is referred to
as a trace.

Hint: Note that the first PC Trace entry matches with the first MAR Trace entry.

Fill in the missing entries in all the 3 tables below. (Indicated by the eight grey shaded boxes)

Registers Initial
Value

After 1st

Instruction
After 2nd

Instruction
After 3rd

Instruction
After 4th

Instruction

R0 0x4006 0x4050 0x4050 0x4050 0x4050

R1 0x5009 0x5009 0x5009 0x5009 0x5009

R2 0x4008 0x4008 0x4008 0x4008 0x4008

R3 0x4002 0x4002 0x8005 0x8005 0x8005

R4 0x4003 0x4003 0x4003 0x4003 0x4003

R5 0x400D 0x400D 0x400D 0x400D 0x400D

R6 0x400C 0x400C 0x400C 0x400C 0x400C

R7 0x6001 0x6001 0x6001 0x6001 0x400E

MAR Trace MDR Trace

0x3000 0xA009

0x300A 0x3025

0x3025 0x4050

0x3001 0x1703

0x3002 0xC140

0x400D 0x4040

8

PC Trace (in HEX)

0x3000

0x3001

0x3002

0x400D

SCRATCH PAGE:

9

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.

SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition

| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate

| 0 0 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND

| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, imm5 ; Bit-wise AND with Immediate

| 0 1 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx, label (where x = {n,z,p,zp,np,nz,nzp}) ;

Branch

| 0 0 0 0 | n | z | p | PCoffset9 | GO  ((n and N) OR (z AND Z) OR (p AND P))
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if (GO is true) then PC  PC’ + SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump

| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine

| 0 1 0 0 | 1 | PCoffset11 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register

| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp  PC’, PC  BaseR, R7  temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative

| 0 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect

| 1 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[mem[PC’ + SEXT(PCoffset9)]] also
setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset

| 0 1 1 0 | DR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address

| 1 1 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement

| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine

| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt

| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2
nd

Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative

| 0 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect

| 1 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1 | SR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)]  SR

10

11

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call

| 1 1 1 1 | 0 0 0 0 | trapvect8 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode

| 1 1 0 1 | |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

12

1
1

