
CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Professor Karthikeyan Sankaralingam

TAs: Suriyha Balaram Sankari, Newsha Ardalani, Rebecca Lam, Kamlesh Prakash, and
Yinggang Huang

Examination 4
In Class (50 minutes)
Friday, May 11, 2012

Weight: 17.5%

NO: BOOK(S), NOTE(S), CALCULATORS OF ANY SORT.

This exam has 11 pages, including a blank page at the end. Plan your time carefully, since some
problems are longer than others. You must turn in pages 1 to 11.

LAST NAME: ___

FIRST NAME:___

SECTION: ___

CAMPUS ID# ___

EMAIL ID ___

1

Question Maximum Points Points

1 6

2 4

3 5

4 4

5 2

6 5

7 4

Total 30

2

Problem 1 (6 points)
An LC-3 assembly language program is given below.

.ORIG x3000
LEA R0, STR1
LEA R1, STR2

LOOP LDR R2, R0, #0
BRz DIFF
LDR R3, R1, #0
BRz DIFF
ADD R0, R0, #1
ADD R1, R1, #1
BRnzp LOOP

DIFF LDR R2, R0, #0
LDR R3, R1, #0
NOT R3, R3
ADD R3, R3, #1
ADD R3, R2, R3
BRp OUT1
BRn OUT2
BRz OUT3

OUT1 LEA R0, STR1
BRnzp DONE

OUT2 LEA R0, STR2
BRnzp DONE

OUT3 LEA R0, STR3
DONE PUTS

HALT

STR1 .STRINGZ "I close my eyes only for a moment and the moment’s gone"
STR2 .STRINGZ "There’s a lady who’s sure all that glitters is gold"
STR3 .STRINGZ "Unsealed on a porch a letter sat"

Note: there are 57 characters in the first string (including null)

a. Fill in the symbol table created by the first pass of the assembler on the above program for the
following labels / symbols (3 points)

Label Address
LOOP 0x3002
DIFF 0x3009
OUT1 0x3011
OUT2 0x3013
STR1 0x3018
STR2 0x3050

b.

3

c. Assume we don’t know anything about the strings stored in STR1, STR2, and STR3. What does
the above program do? Give your answer in one or two sentences. (1 point)

It will compare STR1 and STR2 and output the longer string. Else it will display STR3.

d. What is the output of this program? (2 points)

“I close my eyes only for a moment and the moment’s gone”

Problem 2 (4 points) 1 point each
Answer the following short answer questions in one or two sentences.

a. What are the two methods for accessing I/O devices?

Memory mapped and special I/O instructions

b. Define and contrast callee-save and caller-save.
Callee-save: the called subroutine will save any registers it will use during its execution
Caller-save: the caller of the subroutine will save any registers the subroutine will use

before calling it.
The difference is when the registers are saved: before or within the subroutine call.

c. Give one example of a syntax error using the AND immediate instruction and explain the error.

AND R0, R0, #50 : Immediate value out of range
AND R0, R8, #0 : Invalid register
AND R0, R0, Label : Invalid input parameter

d. Is there a problem with using STR as a label in an LC-3 assembly program? Why or why not?

Yes, STR is an instruction and cannot be used as a label.

4

Problem 3 (5 points)
The following LC-3 subroutine implements the PUTS service routine. This means it will output the string
stored at the address stored in R0 and then return to normal execution.

.ORIG x0466
ST R1, R1_TMP
ST R2, R2_TMP

L1 LDI R2, DSR
BRzp L1

LDR R1, R0, #0
BRz DONE
STI R1, DDR

ADD R0, R0, #1
BRnzp L1

DONE LD R2, R2_TMP
 LD R1, R1_TMP
 RET

DSR .FILL xFE04 ; Address of DSR
DDR .FILL xFE06 ; Address of DDR
R1_TMP .FILL 0
R2_TMP .FILL 0

a. Fill in the blanks. There should be one instruction per line and no NOPs. (3 points)

b. Assume the above assembly code is a service routine that is a part of the LC-3 OS. Suppose we

can call it using TRAP x56. Where is the address of the trap vector, and what are its contents? (2
points)

Give all answers in hex

Address of TRAP vector Contents at this memory location

0x56 0x0466

5

Problem 4 (4 points)

The following program reads two inputs from memory locations A and B and compares their contents.
If M[A] < M[B], the program terminates with the value 1 in memory location COMPARE_RESULT,
otherwise it stores zero in COMPARE_RESULT and terminates. What is the problem with the following
code? How can you resolve it? Answer in one or two sentences in the box provided.

.ORIG x3000

LD R0, A
LD R1, B
JSR COMPARE
HALT

COMPARE ST R7, R7_TMP
JSR NEG ; compute -R0
ADD R0, R0, R1 ; compute R1-R0
BRP STORE_ONE

STORE_ZERO LD R0, ZERO
ST R0, COMPARE_RESULT
BR END_COMP

STORE_ONE LD R0, ONE
ST R0, COMPARE_RESULT

END_COMP LD R7, R7_TMP
RET

NEG ST R7, R7_TMP
NOT R0, R0
ADD R0, R0, #1
LD R7, R7_TMP
RET

A .BLKW 1
B .BLKW 1
R7_TMP .BLKW 1
COMPARE_RESULT .BLKW 1

ZERO .FILL 0
ONE .FILL 1

.END

ANSWER:

Problem: R7_TMP is used for storing the return address of two subroutines that one of them is called
inside the other. This causes the return address for COMPARE subroutine that is stored in R7_TMP to be
overwritten when the NEG subroutine is being called.
Solution: Store R7 for COMPARE(NEG) subroutine in R7_TMP but for the NEG(COMPARE)
subroutine in a memory location other than R7_TMP.

6

Problem 5 (2 points)

A programmer decides to design a variant of the LC-3 that does not need a keyboard status register.
Instead, he creates a readable/writable keyboard data and status register (KBDSR). With the KBDSR, a
program requiring keyboard input waits until a nonzero value appears in the KBDSR and reads this value
into R0. The nonzero value is the ASCII value of the last key pressed. Then the program writes a zero
into the KBDSR indicating that it has read the data. Fill in the following blanks to implement this new
scheme. (1 instruction per line)

ZERO LDI R0, C

BRz ZERO

NONZERO AND Ri, Ri, #0

STI Ri, C

BRnzp NEXT_TASK

 C .FILL xFE00 ; Address of KBDSR

Ri could be any register other than R0

Problem 6 (5 points)

7

Select only one answer choice for the following questions about LC-3:

1. Suppose JSRR R5 is stored at memory location x400F and R5 contains x3009. The
execution of JSRR instruction will cause:

a. R7 to be loaded with x300A and the PC to be loaded with x400F
b. R7 to be loaded with x4010 and the PC to be loaded with x300A
c. R7 to be loaded with x4010 and the PC to be loaded with x3009
d. R7 to be loaded with x3010 and the PC to be loaded with x400F

2. Which of the following is not true about interrupt driven I/O?
a. The processor must routinely check the status register for the device until new

data arrives or the device is ready
b. The device controls the interaction by sending a special signal to the processor

when it is ready
c. It has built in priority levels for different device requests
d. It is more efficient than polling

4. At the end of which phase of instruction cycle does an interrupt-driven I/O processor test
for an interrupt signal?

a. Store Result
b. Execute
c. Decode
d. Fetch

5. In LC-3, in what range of addresses are the trap vectors stored?
a. xFDFF - xFFFF
b. xFE00- xFFFF
c. xFF00 - xFFFF
d. x0000 - x00FF

5. Which one is the highest priority level?
a. PL7
b. PL0
c. PL1
d. They are all equal in priority

Problem 7 (4 points)
Suppose the LC-3 is modified such that the TRAP vector table exists in the range of addresses from
0x0000 to 0x0007. The following tables show the TRAP vector table and the relevant system service

8

routines.
TRAP vector table:
Address Memory Content
0x0000 0x000A
0x0001 0x000F
0x0002 0x000E
0x0003 0x000A
0x0004 0x000B
0x0005 0x000D
0x0006 0x000F
0x0007 0x000C

Service routines:
Address Label Instruction

0x000A ADD R0, R0, #10
0x000B ST R0, L2
0x000C RET
0x000D L1 LD R0, L3
0x000E BRn L1
0x000F RET
0x0010 L2 .FILL x100A
0x0011 L3 .FILL x100B

Suppose we are running a program and we reach to TRAP x0 instruction at memory location xABCD.
Show the MAR trace for a TRAP x0 call. Give all the answers in HEX.
You may not need to use all the blank boxes.

MAR Trace

xABCD

x0000

x000A

x000B

x0010

x000C

Scratch Page

9

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.

SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition
| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR SR1 + SR2 also setcc()

10

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate
| 0 0 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND
| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR,SR1,imm5 ; Bit-wise AND with Immediate
| 0 1 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx,label (where x={n,z,p,zp,np,nz,nzp}); Branch
| 0 0 0 0 | n | z | p | PCoffset9 | GO ((n and N) OR (z AND Z) OR (p AND P))
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if(GO is true) then PCPC’+ SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump
| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine
| 0 1 0 0 | 1 | PCoffset11 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 PC’, PC PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register
| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp PC’, PC BaseR, R7 temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative
| 0 0 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect
| 1 0 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DRmem[mem[PC’+SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset
| 0 1 1 0 | DR | BaseR | offset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address
| 1 1 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement
| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine
| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt
| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative
| 0 0 1 1 | SR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)] SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect
| 1 0 1 1 | SR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]] SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset
| 0 1 1 1 | SR | BaseR | offset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)] SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call
| 1 1 1 1 | 0 0 0 0 | trapvect8 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 PC’, PC mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode
| 1 1 0 1 | |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11

