CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Professor Karthikeyan Sankaralingam TAs: Suriyha Balaram Sankari, Kamlesh Prakash, Rebecca Lam, Newsha Ardalani, and Yinggang Huang

> Examination 2 In Class (50 minutes) Friday, Mar 09, 2012 Weight: 17.5%

NO: BOOK(S), NOTE(S), CALCULATORS OF ANY SORT.

This exam has 12 pages, including a blank page at the end. Plan your time carefully, since some problems are longer than others. You must turn in pages 1 to 11.

LAST NAME:	
FIRST NAME:	_
SECTION:	
CAMPUS ID#	
EMAIL ID	

Question	Maximum Points	Points
1	2	
2	2	
3	4	
4	4	
5	4	
6	5	
7	4	
8	3	
9	2	
Ponus	3	
Bonus	3	
Total (excluding bonus)	30	

Problem 1 (2 Points)

Write the AND-OR logic expression for the output Y, as a function of the inputs A, B, and C, corresponding to the following truth table. You need not simplify the expression.

(AND-OR logic expression is of the form $Y = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \dots$), where \overline{A} is NOT (A).

Inputs			Output
А	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

 $Y = \overline{A} \overline{B} C + \overline{A} B \overline{C} + A \overline{B} \overline{C} + A B C$

Problem 2 (2 Points)

Suppose a 64-bit instruction takes the following format:

				1
OPCODE	DR	SR1	SR2	UNUSED
0.0052		3111	J.,	0.10022

If there are 325 opcodes and 155 registers,

a. What is the minimum number of bits required to represent the OPCODE?

 $325 < 2^9 => 9$ Bits.

b. What is the minimum number of bits required to represent the Source Register, SR1?

155 < 2^8 => 8 Bits.

c. What is the minimum number of bits required to represent the Destination Register, DR?

155 < 2^8 => 8 Bits.

d. What is maximum number of UNUSED bits in the instruction encoding?

(64-9-8-8-8) = 31 Bits.

Problem 3 (4 Points)

For the gate level circuit shown, fill out the following truth table for X and Y.

Inputs			Out	puts
Α	В	С	Х	Υ
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	0
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

The logic equation reduces to $X = A + \overline{B} + \overline{C}$ and Y = ABC.

Problem 4 (4 Points)

Design a gate level circuit which takes two inputs A and B and gives an output of '1' if both the inputs are same and '0' otherwise. Use exactly 5 two input NAND Gates. No other gates are allowed. (Show all the steps to get Partial credits).

Hint: First draw the truth table.

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Two Possible Solutions.

(OR)

Problem 5 (4 Points)

Given the transistor level circuit below:

a) Fill out the following truth table.

Inputs			Output
Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

b) Write the logical expression for the output Y with respect to inputs A, B, and C.

$$Y = (A + B) \cdot C$$

Problem 6 (5 Points)

Draw a finite state machine for recognizing the bit sequence "1010". The machine takes one input every clock cycle which can be 1 or 0. The machine outputs a '1' when the sequence 1010 is recognized; otherwise it outputs a '0'.

IMPORTANT: The machine should also recognize overlapping input sequences.

Sample Input	0100 1010 1010 1100
Sample Output	0000 0001 0101 0000

Problem 7 (4 Points)

Implement the following truth table using **one** 2:1 MUX block and **one** NOT gate. No other logic gates or blocks should be used. **Do not connect logic '1' or logic '0' directly as input to the MUX.**

Α	В	Y
0	0	1
0	1	0
1	0	1
1	1	1

2:1 MUX BLOCK

Two Possible Solutions.

Problem 8 (3 Points)

- a. Minimum number of flip flops required to detect the 9-bit sequence "101101011" is 4.
- b. Number of address bits required to address a memory with an address space containing 4096 locations is **12**.
- c. In a Von Neumann model machine, the Program Counter (PC) holds the address of the next instruction.

Problem 9 (2 Points)

Assume that you have a set of NAND gates and no other logic gates are available. What is the minimum number of two-input NAND gates required to implement a two-input NOR function?

4 NAND gates are required.

Bonus Problem (3 Points)

a) What does the below circuit implement. Write its output in the form of a truth table. Inputs are A and C. Output is O.

Α	С	0
0	0	Z
0	1	0
1	0	Z
1	1	1

Z – High Impedance.

This is called a transmission gate. It transmits the value of A to the output when C is set to 1.

b) What does the below circuit implement. Write its output in the form of a truth table. Inputs are A, B, and C. Output is O. You will notice that it is using the circuit we showed in part

(a).

Inputs			Output
Α	В	С	0
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

This circuit implements a 2-input Multiplexer (2: 1 MUX) where C is the **Select** input. A is Input IO and B is Input I1.

c) Write the output for the circuit in part (b) as a logic expression in terms of A, B, and C. You may use \overline{A} , \overline{B} , and \overline{C} in this formula.

$O = \overline{C} A + C B$.

SCRATCH PAGE: