Homework 6 CS/ECE 252: Sec 1 & 2 [Due 11:59AM on Mon, Apr 7]
Primary contact for this hw: Lisa Ossian [ossianli at cs dot wisc dot edu]

Important Notes:

This homework must be submitted electronically to the Learn@UW dropbox. The files to be
submitted include binary code as binary files (*.bin), pseudo-code in text files (*.txt), and
README.txt (see the submission guidelines below). Do not submit files in hex or assembly!
Only machine language for LC-3 is accepted for submission.

Your programs should always start at address x3000 and end with a HALT instruction (OxF025).

README file:
Download the file: README.txt.

Replace Lastname, UWID, and Section#. Replace ADDRESS with the halt address for the
corresponding problem (HALTP1 = halt address for problem 1, HALTP2 = halt address for
problem 2, etc.).

Submission Guidelines:

1. Please submit only one compressed or archive file (*.zip or *.tar.gz) to the folder homework®6.
2. Name the archive file with the following format: Lastname with .zip or .tar.gz as

suffix where Lastname is your last name with 1st letter capitalized.

3. Your archive file should contain the following (the files MUST be named exactly like this):

A. hw6 p1.txt — Pseudo-code for problem 1

B. hw6_p1.bin — Binary code for problem 1

C. hw6_p2.txt — Your answers for problem 2

D. hw6_p3.txt — Pseudo-code for problem 3

E. hw6_p3.bin — Binary code for problem 3

F. hw6_p4.txt — Pseudo-code for problem 4

G. hw6_p4.bin — Binary code for problem 4

H. README.txt - Readme file that contains your name, student ID, and section number and the
HALT addresses for problems 1, 3, and 4 (one HALT address for each problem).

4. You can submit your code and other files as many times as you would like until the due time
on the due date indicated above.

Problem 1 (6 points)



Write a short LC-3 program in PennSim that compares the 2 numbers in R1 and R2, and then
puts the smaller number in RO. If R1 is equal to R2, store 50 in RO. Finally, store the result to
memory location 0x5000.

a) (2 points) Write the pseudo code for the algorithm. Please submit your pseudo code in a
file exactly named as “hw6_p1.txt", without the double quotes, to dropbox.

Clear RO (Initialize it to 0)

Get the value of -R2

Store the value of —R2 into R3

Add R1 and R3, store result into R4

If R4 ==0, RO =50

If R4 > 0, this means that R2 < R1, so RO = R2
If R4 < 0, this means that R1 < R2, so RO = R1
Store the value of RO to memory location x5000

b) (4 points) Write an LC-3 program based on pseudo-code from part a. Comment each
line of the source code and submit the binary code to dropbox. The file name should be exactly
“hw6_p1.bin”, without the double quotes.

Binary:

0011000000000000 ; Starting address x3000.

0101000000100000 ; Initialize RO to 0

1001011010111111 ; R3 contains the 1's complement value of R2
0001011011100001 ; R3 contains the 2's complement value of R2
0001100001000011 ; R4 is the result of R1 - R2

0000010000000010 ; Jump to EQUAL so RO is updated to 10
0000001000000011 ; Jump to GREATER so RO is updated to R2
0000100000000100 ; Jump to LESS so RO is updated to R1
0010000000001000 ; RO=50ifR1 ==R2

0000001000000011 ; After update, the program should proceed to store result
0001000000000010 ; RO =R2if R2 < R1

0000001000000001 ; After update, the program should proceed to store result
0001000000000001 ; RO=R1ifR1<R2

0010110000000010 ; Load R6 with address x5000

0111000110000000 ; Store the result into memory location x5000
1111000000100101 ; HALT

0101000000000000 ; Address where the result will be stored.
0000000000110010 ; Data to store when values are equal

Assembly code:



(Note: You were not expect to turn this in for this assignment. This is for future
reference.)

.ORIG x3000 ; Starting address of the program
CLEAR_RO AND RO, RO, #0 ; Initialize RO to 0
NOT R3, R2 ; R3 contains the 1's complement value of R2
ADD R3, R3, #1 ; R3 contains the 2's complement value of R2
ADD R4, R1, R3 : R4 is the result of R1 - R2
BRz EQUAL ; Jump to EQUAL so RO is updated to 10
BRp GREATER ; Jump to GREATER so RO is updated to R2
BRn LESS ; Jump to LESS so RO is updated to R1
EQUAL LD RO, EQDATA ; RO=50if R1==R2
BRp STOP ; After update, the program should proceed to store result
GREATER ADD RO, RO, R2 ; RO =R2if R2 <R1
BRp STOP ; After update, the program should proceed to store result
LESS ADD RO, RO, R1 ; RO=R1ifR1<R2
STOP LD R6, OFFSET ; Load R6 with address x5000
STR RO, R6, #0 ; Store the result into memory location x5000
HALT
OFFSET .FILL x5000 ; Address where the result will be stored.
EQDATA .FILL 50 ; Data to store when values are equal
.END

Problem 2 (6 points)

Load the below LC-3 program in PennSim, and answer the following questions:

Address Memory Content Comment

x3000 0010 0100 0000 1010 R2=0

x3001 0010 0000 0000 1010 RO=7

x3002 0010 0010 0000 1010 R1=8

x3003 0000 0100 0000 0011 BRz x3007

x3004 0001 0100 0000 0010 R2 =R2 + R0
x3005 0001 0010 0111 1111 R1=R1-1

x3006 0000 1111 1111 1100 BR x3003

x3007 0010 0110 0000 0010 Load x4000 into R3




x3008 0111 0100 0111 0000 Store 56 at x4000
x3009 1111 0000 0010 0101 HALT

x300A 0100 0000 0000 0000 Data value x4000
x300B 0000 0000 0000 0000 Data value 0
x300C 0000 0000 0000 0111 Data value 7
x300D° 0000 0000 0000 1000 Data value 8

a) (3 points) Fill in the comments column with a summary of what each instruction
does.

b) (1 point) How many times does the instruction at address x3003 execute?
9

¢) (1 point) What number does this program write to memory and in which
location?

56 at location x4000

d) (1 point) What is the purpose of this program? Describe its purpose in one
sentence.

This program multiples 7 by 8 and stores the result at memory location x4000.

Problem 3 (9 points)

Write an LC-3 program that multiplies the number in R1 by the number in R2 and stores the
result at memory location 0x5000. Furthermore, store a 1 at memory location 0x5001 if the
product is odd or a 0 if it is even. (You can assume that the numbers in R1 and R2 will be
positive.)

(3 points) Write the pseudo code for the algorithm. Please submit your pseudo code in a file
exactly named as “hw6_p3.txt", without the double quotes, to dropbox.

Clear R3.

Clear R4.

Copy value from R1 to R3.
Break to multiplication loop.

Loop: Add value of R2 for each iteration to R4, which will eventually be the product.
Decrement R3.

Exit the loop once R3 is nonpositive.

Load the address where the product will be stored.



Store the product at the address in R7.

Load hex value x0001, which will be used to check if a number is odd or even.
And R4 and R1 to determine if R4 is odd or even.

Load the address where output is to be stored.

This will store a 1 if product is odd and 0 otherwise.

Exit the program.

Hex number used to check whether product is odd or even.

Address where product is stored.

Address where bit indicating whether output is odd or even is stored.

(6 points) Write an LC-3 program in PennSim based on pseudo-code from part a. Comment
each line of the source code and submit the binary code to dropbox. The file name should
be exactly “hw6_p3.bin”, without the double quotes.

Binary:

0011000000000000 ; Starting address of the program

0101011011100000 ; Clear R3.

0101100100100000 ; Clear R4.

0001011011000001 ; Copy value from R1 to R3.

0000111000000000 ; Break to multiplication loop.

0001100100000010 ; Add value of R2 for each iteration to R4, which will eventually be the
product.

0001011011111111 ; Decrement R3.

0000001111111101 ; Exit the loop once R3 is nonpositive.

0010111000000111 ; Load the address where the product will be stored.
0111100111000000 ; Store the product at the address in R7.

0010001000000100 ; Load hex value x0001, which will be used to check if a number is odd or
even.

0101010100000001 ; And R4 and R1 to determine if R4 is odd or even.
0010011000000100 ; Load the address where output is to be stored.

0111010011000000 ; This will store a 1 if product is odd and 0 otherwise.
1111000000100101 ; Exit the program.

0000000000000001 ; Hex number used to check whether product is odd or even.
0101000000000000 ; Address where product is stored.

0101000000000001 ; Address where bit indicating whether output is odd or even is stored.

Assembly code:
(Note: You were not expect to turn this in for this assignment. This is for future
reference.)

.ORIG x3000 ; Starting address of the program
AND R3, R3, #0 ; Clear R3.



AND R4, R4, #0 ; Clear R4.

ADD R3, R3, R1 ; Copy value from R1 to R3.
BR LOOP ; Break to multiplication loop.
LOOP ADD R4, R4, R2 : Add value of R2 for each iteration to R4, which will
; eventually be the product.
ADD R3, R3, #-1 : Decrement R3.
BRp LOOP ; Exit the loop once R3 is nonpositive.
STORE LD R7, PRODUCT ; Load the address where the product will be stored.
STR R4, R7, #0 ; Store the product at the address in R7.
CHECK_LAST

LD R1, CHECK_LAST_BIT ; Load hex value x0001, which will be
: used to check if a number is odd or

; even.

AND R2, R4, R1 : And R4 and R1 to determine if R4 is
; odd or even.

LD R3, ODD_OR_EVEN ; Load the address where output is to be
; stored.

STR R2, RS, #0 ; This will store a 1 if product is odd and
; 0 otherwise.

HALT ; Exit the program.

CHECK_LAST BIT .FILL x0001 ; Hex number used to check whether product is
; odd or even.
PRODUCT .FILL x5000 ; Address where product is stored.
ODD_OR_EVEN .FILL x5001 ; Address where bit indicating whether output is odd
; or even is stored.

.END
Problem 4 (9 points)
Write an LC-3 program that determines whether the number stored at 0x4000 is divisible by n.
Use the value stored at memory location 0x4001 for input n. If the number at 0x4000 is divisible
by n, store the number at 0x4000 to 0x5000. If not, store the next smallest number that is

divisible by n. (You can assume that both numbers given at 0x4000 and 0x4001 will be positive.)

(3 points) Write the pseudo code for the algorithm. Please submit your pseudo code in a file
exactly named as “hw6_p3.txt", without the double quotes, to dropbox.

Load the address of the dividend into R4



Load the address of the divisor into R5
Load the dividend to RO
Load the divisor to R1 which will be complemented

Get 2's complement value of divisor and place it into R1
Clear R2, it will contain the value of quotient finally

Loop: Increment R2 for quotient, until the loop breaks

In each iteration, RO <--- RO + R1

Forward check if the intermediate result is already less than the divisor (R3 = RO + R1)
Loop breaks if R3 is negative, otherwise continue the iterations

Add 0 to the remainder, so we can break on it.

Break to remain_is_zero code if there is no remainder.
Break to remain_is_pos code if there is a remainder.
If remainder is zero {

Load the address where output will be stored in R6.
Reload the address of the dividend into R7.

Load the dividend to R7.

Store the dividend at the address in R6.

Break to stop to exit the program.

}

Else if remainder is positive {

Reload the address of the divisor into R6.

Load the divisor to R6.

Clear R4 for multiplication.

Set R4 to the quotient of division for multiplication.
Clear R5 for multiplication.

Loop: During each increment add the divisor to a sum at R5.
Decrement the quotient at R4.

Keep going until the quotient is negative.

Load the address where output will be stored in R6.
Store the value of quotient*divisor at the address in R6.

}

Exit the program.

(6 points) Write an LC-3 program in PennSim based on pseudo-code from part a. Comment



each line of the source code and submit the binary code to dropbox. The file name should
be exactly “hw6_p3.bin”, without the double quotes.

Binary:

0011000000000000 ; Starting address of the program
0010100000011101 ; Load the address of the dividend into R4
0010101000011101 ; Load the address of the divisor into R5
0110000100000000 ; Load the dividend to RO

0110001101000000 ; Load the divisor to R1 which will be complemented
1001001001111111 ; Get 2's complement value for the divisor
0001001001100001 ; therefore R1 has the value of -divisor
0101010010100000 ; Clear R2, it will contain the value of quotient finally
0001010010100001 ; Increment R2 for quotient, until the loop breaks
0001000000000001 ; In each iteration, get the result from the subtraction
0001011000000001 ; Forward check if the intermediate result is already less than the divisor.
0000011111111100 ; If R3 is non-negative, go 3 steps back
0001000000100000 ; Add 0 to the remainder, so we can break on it.
0000010000000001 ; If there is no remainder, output the dividend.
0000001000000101 ; If there is a remainder, output quotient*divisor.
0010110000010001 ; Load the address where output will be stored in R6.
0010111000001110 ; Reload the address of the dividend into R7.
0110111111000000 ; Load the dividend to R7.

0111111110000000 ; Store the dividend at the address in R6.
0000111000001010 ; Break to stop to exit the program.
0010110000001011 ; Reload the address of the divisor into R6.
0110110110000000 ; Load the divisor to R6.

0101100100100000 ; Clear R4 for multiplication.

0001100100000010 ; Set R4 to the quotient of division for multiplication.
0101101101100000 ; Clear R5 for multiplication.

0001101101000110 ; Add divisor to R5 for every 1 in the quotient.
0001100100111111 ; Subtract 1 from the quotient.

0000011111111101 ; Keep going until quotient is negative.
0010110000000100 ; Load the address where output will be stored in R6.
0111101110000000 ; Store the value of quotient*divisor at the address in R6.
1111000000100101 ; HALT

0100000000000000 ; Address where dividend is stored.
0100000000000001 ; Address where divisor is stored.
0101000000000000 ; Address where output will be stored.

Assembly code:
(Note: You were not expect to turn this in for this assignment. This is for future
reference.)



.ORIG x3000 ; Starting address of the program
LD R4, DIVIDEND ; Load the address of the dividend into R4
LD R5, DIVISOR : Load the address of the divisor into R5

LDR RO, R4, #0 : Load the dividend to RO

LDR R1, R5, #0 ; Load the divisor to R1 which will be complemented
NOT R1, R1 ; Get 2's complement value for the divisor

ADD R1, R1, #1 ; therefore R1 has the value of -divisor

AND R2, R2, #0 ; Clear R2, it will contain the value of quotient finally

; Loop starts. The loop iterates over and over until the updated value is less than the divisor.
; After all iterations end, R2 contains value of the quotient while RO contains the value of

: remainder.

LOOP

ADD R2, R2, #1 ; Increment R2 for quotient, until the loop breaks
ADD RO, RO, R1 ; In each iteration, get the result from the subtraction
ADD R3, RO, R1 ; Forward check if the intermediate result is already less

: than the divisor

BRzp LOOP ; If R3 is non-negative, go 3 steps back

ADD RO, RO, #0 ; Add 0 to the remainder, so we can break on it.
BRz REMAIN_IS ZERO ; If there is no remainder, output the dividend.
BRp REMAIN_IS_POS ; If there is a remainder, output quotient*divisor.

REMAIN_IS ZERO LD R6, OUTPUT ; Load the address where output will be stored in

: R6.
LD R7, DIVIDEND ; Reload the address of the dividend into R7.
LDR R7, R7, #0 ; Load the dividend to R7.
STR R7, R6, #0 ; Store the dividend at the address in R6.
BRnzp STOP ; Break to stop to exit the program.

REMAIN_IS POS LD Re6, DIVISOR : Reload the address of the divisor into R6.

LDR R6, R6, #0 ; Load the divisor to R6.

AND R4, R4, #0 ; Clear R4 for multiplication.

ADD R4, R4, R2 ; Set R4 to the quotient of division for multiplication.
AND R5, R5, #0 ; Clear R5 for multiplication.

; Loop starts. This loop iterates over and over until the quotient equals 0. During each iteration
; the divisor is added to a sum. The sum at the end of the iterations is the quotient*divisor.



MULT_LOOP ADD R5, R5, R6 ; Add divisor to R5 for every 1 in the

; quotient.
ADD R4, R4, #-1 ; Subtract 1 from the quotient.
BRzp MULT_LOOP ; Keep going until quotient is negative.
LD R6, OUTPUT ; Load the address where output will be
: stored in R6.
STR R5, R6, #0 ; Store the value of quotient*divisor at the

: address in R6.

STOP HALT ; Exit the program.

DIVIDEND .FILL x4000 : Address where dividend is stored.
DIVISOR .FILL x4001 ; Address where divisor is stored.
OUTPUT .FILL x5000 ; Address where output will be stored.

.END



