CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Karthikeyan Sankaralingam, Pradip Vallathol

TAs: Deepika Muthukumar, Sujith Surendran, Murali Sivalingam, Lisa Ossia

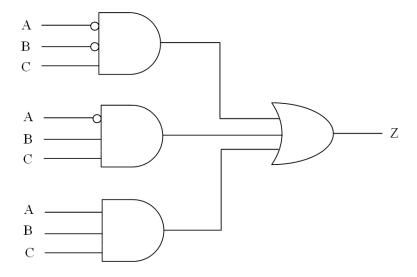
Midterm Examination 2 In Class (50 minutes) Wednesday, March 12, 2014 Weight: 17.5%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has **eleven** pages. **Circle your final answers**. Plan your time carefully since some problems are longer than others. You **must turn in the pages 1-11**. Use the blank sides of the exam for scratch work.

LAST NAME:		
FIRST NAME:		
ID#		
10 11	 	

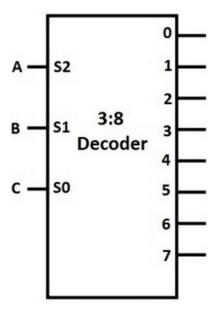
Problem 1 (4 points)

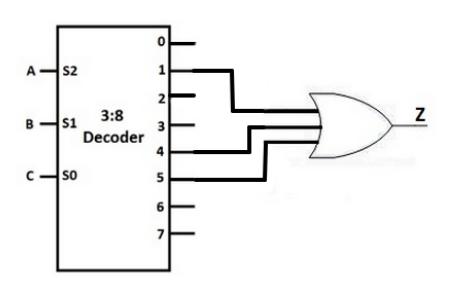

Use the truth table to answer the following questions.

A	В	С	Z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

a. (2 points) Write the Boolean expression for Z (in terms of A, B, and C) corresponding to the truth table. You don't need to reduce the expression.

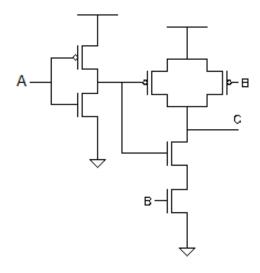
Z = ((NOT(A)) AND (NOT(B)) AND C)) OR ((NOT(A)) AND B AND C) OR (A AND B AND C))


b. (2 points) Draw the logic gate-level circuit which corresponds to the truth table. Do not simplify the expression

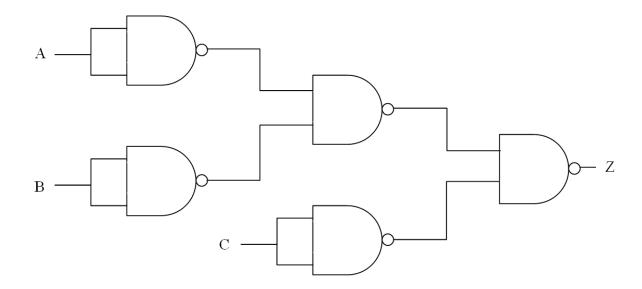


Problem 2 (3 points)

Implement the truth table below, with inputs A, B, and C and output Z, using a 3:8 decoder (as pictured below) and a 3-input OR gate.

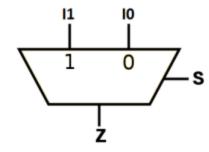

А	В	С	Z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

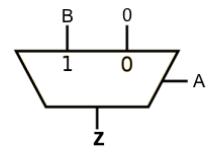
Problem 3 (3 points)


Complete the truth table for the following transistor level circuit:

А	В	С
0	0	1
0	1	0
1	0	1
1	1	1

Problem 4 (3 points)


Given the logic equation Z = (NOT(A OR B)) OR CDraw the gate-level circuit for Z using only 2-input NAND gates (Hint: DeMorgan's Law).


Problem 5 (4 points)

Implement the following truth table using a 2:1 MUX block.

А	В	Z
0	0	0
0	1	0
1	0	0
1	1	1

2:1 MUX BLOCK

Problem 6 (4 points)

Suppose a 64-bit instruction takes the following format:

OPCODE	SR	DR	IMM
--------	----	----	-----

If there are 201 opcodes and 64 registers,

a) What is the minimum number of bits required to represent the OPCODE?

 $201 \text{ Opcodes} < 256 = 2^8$

8 bits opcode

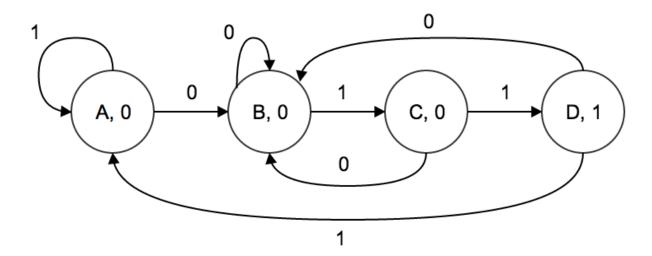
b) What is the minimum number of bits required to represent the SR register?

 $64 \text{ registers} = 2^6$

6 bits SR register

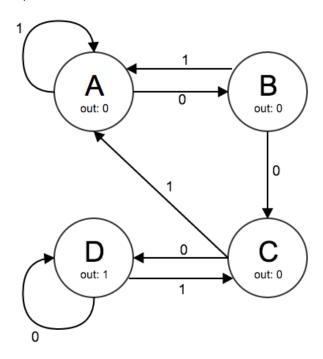
c) What is the maximum number of bits that can be used to represent the immediate field (IMM)?

64 - 8 - 6 - 6 = 44


44 bits IMM

d. If the immediate (IMM) uses one's complement representation, what is the smallest number that can be represented in the IMM field?

Problem 7 (4 points)


Draw a finite state machine for recognizing the bit sequence "**011**". The machine takes one input every clock cycle which can be 1 or 0. The machine outputs a '1' when the sequence **011** is recognized; otherwise it outputs a '0'.

Sample Input	0111101011
Sample Output	0010000001

Problem 8 (2 points)

Consider the finite state machine drawn below. State A has output 0, state B has output 0, state C has output 0, and state D has output 1.

Fill out the next state column in the table below for this state machine.

Current State	Input	Next State
Α	0	В
Α	1	A
В	0	С
В	1	A
С	0	D
С	1	A
D	0	D
D	1	С

Problem 9 (3 points)

- 1. Which of the following consists of all of the structures needed to manage the processing that is carried out by the computer?
 - a. the control unit
 - b. the processing unit
 - c. memory
 - d. input/output
- 2. How many registers does the processing unit of the LC-3 have?
 - a. 4
 - b. 6
 - c. 8
 - d. 16
- 3. In the instruction cycle, what does the "evaluate address" phase do?
 - a. obtains the source operands needed to process the instruction.
 - b. carries out the execution of the instruction.
 - c. examines the instruction in order to figure out what the microarchitecture is being asked to do.
 - d. computes the address of the memory location that is needed to process the instruction.