CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Karthikeyan Sankaralingam, Pradip Vallathol

TAs: Deepika Muthukumar, Sujith Surendran, Murali Sivalingam, Lisa Ossian

Midterm Examination 4

In Class (50 minutes)
Wednesday, May 09, 2014
Weight: 17.5%

NO: BOOK(S), NOTE(S). OR CALCULATORS OF ANY SORT.

The exam has nine pages. You must turn in the pages 1-7. Use the blank sides of the exam for
scratch work.

Circle your final answers. Plan your time carefully since some problems are longer than
others.

Note:

e The Instruction set is provided on Page 9
e TRAP codes and Assembler directives are provided on Page 10

LAST NAME:

FIRST NAME:

ID#

Problem

Maximum Points

Points Earned

Total

30

Problem 1: Short answer type questions (7 Points)

a) (1 Point) Mention what problem could come up if DSR is not checked before writing into
DDR.

You could overwrite the previous data even before it is displayed.

b) (2 Points) What is the difference between polling and interrupt based I/O ? Briefly explain a
scenario where you would prefer interrupt based I/O over polling based 1/0?

In Polling based I/O, the program polls checks continuously for the status of the data. In an
interrupt based I/O, an interrupt will be generated to signal the program of the completion of
work.

If the I/O device takes a lot of time to execute the command, then polling consumes a lot of
cycles. In these cases, interrupt driven I/O is preferred

¢) (2 Points) Briefly mention what happens during linking and loading phases of a program.

During the Linking phase, the symbols between different object files which are linked
together gets resolved.
During the loading phase, the executable image is copied onto the memory

d) (2 Points) What will be the value in R2 if you execute the following program (ie, when you
reach the HALT instruction) ?

.ORIG x3000

AND RO, RO, #0
ADD RO, RO, #7
STI RO, DATAl
LD R2, DATAZ2
HALT

DATAl .FILL x3006
DATA? .FILL x3
Answer: 7/

Problem 2: Assembly Errors (2 Points)

Identify 2 assembly errors in the following program:

.ORIG x3001

AND R5, R5, ZERO

LD R5, FOOBAR
NEXT ADD R5, R5, #1

BRz NEXT

LDR R4, R2, #0

ST R4, FOOBAR

NEXT HALT

ZERO .FILL #0

FOOBAR .STRINGZ “YAY!! LAST EXAM”
.END

a. double declaration of NEXT
b. AND with ZERO (address)

Problem 3: Traps and Subroutines (6 Points)

Suppose we want to write a new TRAP subroutine, TRAP x01. This subroutine takes two inputs from
the caller of the subroutine through registers R2 and R1. R2 has the memory address of the first
character of a string and R1 has the number of characters to be printed. The subroutine then prints R1
number of characters from the starting of the string (whose address is located in R2). Fill in the
missing blanks to complete this subroutine code.

Assume that we are implementing callee save subroutine. Save only those registers that are needed.

Assume the trap vector table (also known as system control block) is as shown below:

Address Value
%0000 x3000
x0001 x4000
x0002 x5000

.ORIG _ x4000

ST RO , SAVEREG LOCATIONI1
ST R1 , SAVEREG LOCATIONZ2
ST R2 , SAVEREG LOCATION3
ST R7 , SAVEREG LOCATION4

LOOP LDR RO, R2, #0 ; Load the character to be printed
ouT ; Print the extracted character
ADD R2, R2, #1 ; Point R2 to the next character
ADD R1, R1, #-1 ; Set the condition flags if this is the last character
BRp LOOP ; If this is not the last character, branch to LOOP

LD RO, SAVEREG LOCATION1
LD Rl _, SAVEREG LOCATION2

R2 , SAVEREG LOCATION3
LD R7 , SAVEREG LOCATION4

RET

SAVEREG LOCATION1 .BLKW
SAVEREG LOCATION2 .BLKW
SAVEREG LOCATION3 .BLKW
SAVEREG LOCATION4 .BLKW

e

Problem 4: 1/0O (4 Points)

For the assembly program, assume all the registers (RO - R7) are initialized to the value of
Zero.

.ORIG x3000
LD R1, NEG
LD R2, SET
ILOOP LDI R3, KBSR
BRzp ILOOP
LDI R4, KBDR
STI R2, KBSR
OLOOP LDI R2, DSR
BRzp OLOOP
ADD RO, R4, #0
STI RO, DDR
ADD R5, R5, 1
ADD R6, R5, R1
BRnp OLOOP
HALT

NEG LFILL xXFEFEFB

SET FILL x4000

DSR .FILL xFEQO4 ; Address of DSR

DDR FILL xFEO6 ; Address of DDR

KBSR .FILL xFEOO ; Address of KBSR

KBDR .FILL xXFEO02 ; Address of KBDR
.END

(a) (2 Points) What does the above LC-3 program do?
- Enables Keyboard interrupt
- Displays the ASCII character that the user entered 5 times back to the user.

(b) (2 Points) How is the operation of the keyboard affected by the instruction STI R2, KBSR?

- No impact to the program logic. It just enables the Keyboard interrupt . If we are
polling for next character, there can be a error window where the same old data is used even if
new character is entered.

Problem 5: Two Stage Assembly Process (10 Points)
Consider the following assembly program.

.ORIG x3000
LD RO, DATA
LEA R1, ZERO
STR RO,R1, #-3
LEA R5, STRI

LOOP LDR RO, R5, O
BRz END
ouT
ADD R5, R5, #1
BR LOOP
END HALT
ZERO LFILL #0
STR1 .STRINGZ "Wierd Question"
ARRAY .BLKW x5
DATA FILL x1B62

(a) (3 Points) In the first pass, the assembler creates symbol table. Fill in the symbol table
created by the assembler for this program (in Problem 2(a))

Label Address
LOOP 3004
END 3009

ZERO 300A
STRI 300B

ARRAY 301A

DATA 301F

(b) (2 Points) In the second pass, the assembler creates a binary (.obj) version of the program,

using the entries from the symbol table. Write the binary code generated for the first two
instructions (LEA and LD) in the table below.

Assembly code

Binary Code

LD RO, DATA

0010 000 000011110

LEA R1, ZERO

1110 001 000001000

(c) (3 Points) Complete the missing comments for this program (For loop, consider only first

iteration):
.ORIG x3000
LD RO, DATA ; Value loaded into RO is X1B62
LEA R1, ZERO ; Loads address of ZERO into R1
STR RO,R1,#-3 ; Stores value x1B62 into address x3007
LEA R5, STR1 ; Loads address of STRI1 into R5
LOOP LDR RO, R5, 0 ; Value at RO in the first iteration is x57
BRz END ; Branch to END if ZERO flag is set
OuT ; Print the character at _ RO
ADD R5, R5, #1 ;
BR LOOP ; Branch to LOOP
END HALT ; HALT
ZERO FILL #0
STR1 .STRINGZ "Wierd Question"
ARRAY .BLKW x5
DATA FILL x1B62

(d) (3 Points) What will be printed on the console if this program is run on PennSim?

WedQeto

LC-3 Instruction Set (ertered by Mark D. Hill on 03/14/2007: last update 03/15/2007)

FC': incremeanted PC. satoc(): set condition codes H, B, and P. mem[A] :memory contents at sddress A
SEXT(immediate} : sign-exterd immedimte to

4 3
s S
| I 0 LU |
t t —f——tF
s S
| | imm5
t t —f——F
+ t —4———%
| o o]
t t —f——F
+ t —4———%
| | immS
y t ———f
e

PCoffsetd
s S
+ t —4———%
| 1] a
$ t —+-—1t
e

Floffsetll
s S
t t —f——tF
| 1] a
s S
t t —f——tF

FCoffseth
+ t —4———%
t t —f——F

FCoffseth
e
t t —f——F
|
+ b —t———t
t t —f——F

PCoffs=th
+ t —4———%
} T
| 11 1
+ t —4———%
y t ———f
| i} L
e
S

1] a
e
y t ———f

PCoffseth
+ t —4———%
e S

PCoffseth
t t —f——tF
s S
|
t t —f——tF
s S

tramectd
t t —f——F
+ t —4———%
t t —f——tF

16 bits. EEXT (immediste) : pero-extend immediate to 16 bits.

ADD DR, SE1, ER2 : BRddition

DR 4 SRl + 3ZF2 alsc setcol)

ADD DR, SE1l, immS ; Addition with lomediate
OE 4 SRl + SEfT{immS] also setcc()

AND DR, 3Rl, SR2 ; Bit-wise= ARD

OE 4 SRl ARD 3BEZ also setcc()

ARD DR, SR1 immS : Bit-wise 2MD with [lmmadiate
DR € SRl AND SEXT (imm3) also setoo()

BERx label fwhere x={n z,p, sp,np,ns,nepl) ; Branch
G0 € {(n and N} OR {z AND 5) OR (p BED F))
if (G0 is true) than PCEPC'+ SEAT (PCoffsetd)
JMF BaseR ; Jump

FC 4 BmseR

J5R label ; Jomp to Subroutine

R7 € PCT, FC & PC" # SEXT{FCoffsetll)

J5BER BaseR ; Jump to Subroutine in Register
temp € PC', PC € BaseR, BT & temp

LD DR, lak=l ; Load PC-Balative

OF 4 mem[PC’ + SEXT(PCoffsetd)] also setcoi)
LDI DR, label ; Lomsd [ndirect

DR 4mem [mem [FC' +5EXT (PCoffsetd) 1] alse setco()
LDE DR, BaseR, offsetf ; Load Base+dffs=t
OFE % mem[Basel + SET(offs=t6)] also s=too()
LEA, DR, lahel : Load Effectinve Address

OE 4 PC’ + SEXT({PCoffsetd) mlso ss=too()

HOT DR, SR ; Bit-wise Complemsnt

DR € MOT{SH) also setec()

FET ; Bstuorn from Subroutines

PC & RT

ETI ; Beturn from [nterropt

Sem textbook (2™ Ed. page 537).

ST SR, label : Store PC-Belative

mem[PC + SEXT(PCoffzetd)] € SR

5TI, SR, lshel ; Store Irdir=ct

mem[zem[FC° + SEXT(FCoffset3)]] € SR

STR SE, Basel, offsetf : Store BaseHlifset
mem[BaseR + SEAT (offsetf)] € SR

TRAP ; System Call

R7 € PC", FC € mem[EEAT (trapectB)]

: Urms=d Dpcods=

Initiate illegal opoode exception

TRAP CODES

Code | Equivalent | Description

HALT |TRAP x25 |Halt execution and print message to
console.

IN TRAP x23 | Print prompt on console,
read (and echo) one character from keybd.
Character stored in RO[7:0].

OouT TRAP x21 | Write one character (in R0[7:0]) to console.

GETC |TRAP x20 |Read one character from keyboard.
Character stored in RO[7:0].

PUTS |TRAP x22 | Write null-terminated string to console.
Address of string is in RO.

ASSEMBLER DIRECTIVES

Opcode Operand Meaning

.ORIG address starting address of program

.END end of program

.BLKW n allocate n words of storage

.FILL n allocate one word, initialize with

value n
.STRINGZ |n-character |allocate n+1 locations,
string initialize w/characters and null
terminator

11

