Fall 2020

THE UNIVERSITY

WISCONSIN

MADISON

CS/ECE 552
Course Introduction

Prof. Karu Sankaralingam
(based on slides by Profs. Hu, Lipasti, and San Miguel)
University of Wisconsin — Madison
Computer Sciences Department

What is this course about?

MADISON

64K I-Cache A way Branch Prediction

L

Decode Op-Cache

|—> Micro-op Queue *_,

4 instructions/cycle

6 ops dispatched

Integer Rename Floating Point Rename
S] e R R _
Integer Physical Register File FP Register File

INTEGER

AGU

512K
L2 (1+D) Cache
8 Way

2 loads + 1 store
per cycle

Overview

e CS/ECE 552: basics of modern micro-processor design

 Related Courses

CS/ECE 252/352 (Prerequisites) — gates, logic, memory, organization

CS/ECE 252/354 (Prerequisites) — high-level language down to
machine language interface or instruction set architecture (ISA)

ECE 551 — Verilog design of low level logic blocks
ECE 555 — Transistor level IC design

CS/ECE 752/757 — advanced topics of architecture, multi-core, parallel
processing

CS 758 — advanced topics in architecture (recently: programming
heterogeneous/parallel systems)

ME/CS/ECE 759 — GPU programming
Compiler (CS 536), Operating systems (CS 537) — system software

Coverage

Performance

Instruction set architecture (ISA): MIPS

Basic data path implementation of ISA
Pipelined data path (in great detail)

Cache and Virtual memory

Arithmetic algorithms: multiplication, division
/O

Advanced topics:

— Superscalar, multicore, security, GPUs

Lecture Format

 Before the lecture
— Try to do the readings from the book

* During the lecture
— Video lecture, slides and recording will be made available
— Two in-class Quizzes

e After the lecture

— Will work on homework problems. Homework will be due at start of class

Expected Course Outcomes

Students will be able to:

use standard performance metrics to compare performance of

different digital systems
compare and contrast different adder, multiplier, and divider

implementations.

design a pipelined data path for a RISC (reduced instruction set

computer) instruction set and be familiar with concepts of data
dependence, pipelined hazards and out of order execution.

design basic data and control cache subsystems and understand basic

memory organization

design a pipelined RISC micro-processor system with data cache using
computer aided design tool and validate the correctness of the design

using logic simulation.

CAD Tools

Will use Verilog in class

Install Verilog simulator
— ModelSim

Use remote desktop for simulation etc
Can use Mentor local laptop install

— Student license for ModelSim (usually good for 6 months):
https://www.mentor.com/company/higher ed/modelsim-student-
edition

— CAE/CSL lab machines already have ModelSim installed

— Next Thursday: tutorial on setting ModelSim setup

https://www.mentor.com/company/higher_ed/modelsim-student-edition

Relationship to ECE 551

* ECES551

Focuses on function block level digital design using Verilog.
Comprehensive coverage of Verilog
More details on synthesis

* CS/ECE 552

Focuses on core level (processor level) digital system design
Architecture issues: Pipelined data path, cache and virtual memory
Verilog language usage will be restricted to a basic subset

Verilog design practices and tutorials will be covered primarily during
TA-led discussion sessions.

Students will be assumed to have basic knowledge of Verilog and be
able to start by designing simple digital modules in class.

Administrative Details

e Using Piazza for discussion + announcements
— https://piazza.com/wisc/fall2020/fa20ece552001/home

— Post questions here

 Course website:
http://pages.cs.wisc.edu/~karu/courses/cs552/fall2020/wiki/

— Most important page is the Course Calendar page
— Scores available on Canvas

— Upload assignments to Canvas

* Lots more details in syllabus — please read

Staff & Office Hours

 |nstructor: Karu Sankaralingam (CS 6367)
— Office hours 9:15am to 10am on Tuesdays
— Or by appointment
— Email: karu@cs.wisc.edu

 TA: Guanzhou Hu
— Office hours: TBD
— Email: guanzhou.hu@wisc.edu

Textbook

* David A. Patterson and John L. Hennessy,
Computer Organization and Design: The
Hardware Software Interface, Morgan
Kaufmann Publishers, 5t Edition. ISBN:
9780124077263

 Note: there are three “5th” editions
— We will be using the MIPS edition

Homework

e Homework
— ~5 homework assignments, equally weighted
— Due at start of class
— Will also post practice HWs on some non-Verilog concepts

* Include components for the project

Course Project

* Project
— Implement processor for WISC-SP20 ISA
— Three main (Verilog) phases
— Extra credit points available
— Only individual projects

— Demo and submit written report

Course Grading

* Grading
— Homework 20%
— Quizzes 10%

— Project 70%

Course Logistics

Web-page

Piazza

CSL Account

VPN

Remote Desktop

ModelSim brief demo

No Knowledge of Verilog necessary

Boolean logic

X=AeFBe(C+AeBe+ AeBe '+ AsFEe(+ AeFa(

=AeCe(B+B)+ Ae BeC+ Ae Be(C+ () S A b
A) AJB=BUA, ANB=BNA,
=Aele(l)+ Ae Be '+ AnBe(l) A= AT SR
=AeC+ AeBeC+ A B AU =4, ANG =6,
= . AU({BUC) = (AUB)UC, AN(BNC) = (ANB)NC,
—AsC+ As(Es C+ B) AU(BNC)=(AUB)N(AUC), AN(BUC)=(ANB)U(ANC),
) (AUB) =A'NDB, (ANB) =A'UB,

=AeC+ Ae(B+ B)e(B+C)
=AeC+ As(l)e(B+C)

= Ae T+ Ae(B+)
—AeC+ AeB+ AeC
—Ce(A+A)+AeB
=Ce(l)+ e f

—AeB+C

(16) CS/ECE 552 (Sankaralingam)

Transistors

— 28 vt

W 0 wlit

(17) CS/ECE 552 (Sankaralingam)

Logic gates
T D -
|- I

(18) CS/ECE 552 (Sankaralingam)

State machines

— T

(Clean, Not moving) (Clean, Moving)

Stopped
Cleaned Cleaned Soiled
Started

(Dirty, Moving)

(Dirty, Not moving)

Stopped

(19) CS/ECE 552 (Sankaralingam)

Programming, c or java

#include<stdio.h>

main() {
int ¢, first, last, middle, n, search, array[100];
printf("Enter number of elements\n");
scanf("%d",&n);
printf("Enter %d integers\n", n);
for (c =0 ; c < n ; c++)

scanf("%d",&array[c]);

printf("Enter value to find\n");
scanf("%d",&search);
first = @9; last = n - 1; middle = (first+last)/2;

(20) CS/ECE 552 (Sankaralingam)

Assembly language

lw $t0, 4(%$gp) # fetch N
mult $t0, $to, $to # N*N
lw $t1, 4(%gp) #fetch N

ori $t2, $zero, 3 # 3
mult $t1, $t1, $t2 # 3*N
add $t2, $t0, $t1 # N*N + 3*N

sw $t2, 0(%$gp) # 1= ...

(21) CS/ECE 552 (Sankaralingam)

You DO NOT need to know
Verilog

(22) CS/ECE 552 (Sankaralingam)

(23) CS/ECE 552 (Sankaralingam)

What You Will Learn

How programs are translated into the
machine language
And how the hardware executes them

The hardware/software interface

What determines program performance
And how it can be improved

How hardware designers improve
performance

What is parallel processing

Chapter 1 — Computer Abstractions and Technology — 24

Eight Great Ideas

Design for Moore’s Law

Use abstraction to simplify design
Make the common case fast
Performance via parallelism
Performance via pipelining
Performance via prediction
Hierarchy of memories

Dependability via redundancy

Chapter 1 — Computer Abstractions and Technology — 25

Below Your Program

Application software
Written in high-level language

System software

Compiler: translates HLL code to
machine code

Operating System: service code
Handling input/output
Managing memory and storage
Scheduling tasks & sharing resources

Hardware
Processor, memory, I/O controllers

Chapter 1 — Computer Abstractions and Technology — 26

Levels of Program Code

ngh'level Ianguage High-level swap(int v[], int k)

language {int temp;
program temp = v[k];

Level of abstraction closer ®© LK) = vLkH:
to problem domain |

Provides for productivity Coomier

and portability

vlk+1l] = temp;

Assembly language

. gl T
Textual representation of R thes

Instructions

SW $16, 0(%2)
SW $15, 4(%2)
jr $31

Hardware representation

Binary digits (bits)

Assembler

EnCOded InStrUCtlonS and Binary machine 00000000101000010000000000011000

data

language 00000000000110000001100000100001
program 10001100011000100000000000000000
(for MIPS) 10001100111100100000000000000100

10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Chapter 1 — Computer Abstractions and Technology — 27

Understanding Performance

Algorithm
Determines number of operations executed

Programming language, compiler, architecture

Determine number of machine instructions executed
per operation

Processor and memory system
Determine how fast instructions are executed

/O system (including OS)
Determines how fast I/O operations are executed

Chapter 1 — Computer Abstractions and Technology — 28

For Tuesday
Read chapter 1.1 - 1.5

Chapter 1 — Computer Abstractions and Technology — 29

