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552 In Context

• Prerequisites
– 252/352 – gates, logic, memory, organization

– 252/354 – high-level language down to machine 
language interface or instruction set architecture (ISA)

• This course – 552 – puts it all together
– Implement the logic that provides ISA interface

– Must implement datapath and control

– You will understand…no mystery

– Manage tremendous complexity with abstraction



Why Take 552?

• To become a computer designer

– Alumni of this class helped design your computer

• To learn what is under the hood of a computer

– Innate curiosity

– To write better code/applications

– To write better system software (O/S, compiler, etc.)

• Because it is intellectually fascinating!

– What is the most complex man-made device?



Abstraction and Complexity 

• Abstraction helps us 
manage complexity

• Complex interfaces

– Specify what to do

– Hide details of how

⚫ Goal: remove mystery
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Computer Architecture

• Exercise in engineering tradeoff analysis
– Find the fastest/cheapest/power-efficient/etc. solution

– Optimization problem with 100s of variables

• All the variables are changing
– At non-uniform rates

– With inflection points

– Only one guarantee: Today’s right answer will be wrong 
tomorrow

• Two high-level effects:
– Technology push

– Application Pull



Technology Push

• What do these two intervals have in common?

– 1947-1999 (53 years)

– 2000-2001 (2 years)

⚫ Answer: Equal progress in processor speed!

⚫ The power of exponential growth!

⚫ Driven by Moore’s Law

– Device per chips doubles every 18-24 months

⚫ Computer architects work to turn the additional 
resources into speed/power savings/functionality!



Some History

Date Event Comments

1939 First digital computer John Atanasoff (UW PhD ’30)

1947 1st transistor Bell Labs

1958 1st IC Jack Kilby (MSEE ’50) @TI

Winner of 2000 Nobel prize

1971 1st microprocessor Intel

1974 Intel 4004 2300 transistors

1978 Intel 8086 29K transistors

1989 Intel 80486 1.M transistors, pipelined

1995 Intel Pentium Pro 5.5M transistors

2005 Intel Montecito 1B transistors



Performance Growth

Unmatched by any other industry !

Doubling every 18 months (1982-1996): 800x
– Cars travel at 44,000 mph and get 16,000 mpg

– Air travel: LA to NY in 22 seconds (MACH 800)

– Wheat yield: 80,000 bushels per acre

⚫ Doubling every 24 months (1971-1996): 9,000x

– Cars travel at 600,000 mph, get 150,000 mpg

– Air travel: LA to NY in 2 seconds (MACH 9,000)

– Wheat yield: 900,000 bushels per acre



Technology Push

• Technology advances at varying rates
– E.g. DRAM capacity increases at 60%/year

– But DRAM speed only improves 10%/year

– Creates gap with processor frequency!

• Inflection points
– Crossover causes rapid change

– E.g. enough devices for multicore processor (2001)

• Current issues causing an “inflection point”
– Power consumption

– Reliability

– Variability



Application Pull

• Corollary to Moore’s Law: 
Cost halves every two years

In a decade you can buy a computer for less than its sales 
tax today. –Jim Gray

• Computers cost-effective for
– National security – weapons design

– Enterprise computing – banking

– Departmental computing – computer-aided design

– Personal computer – spreadsheets, email, web

– Pervasive computing – prescription drug labels



Abstraction

• Difference between interface and 
implementation

– Interface: WHAT something does

– Implementation: HOW it does so

• Career note…Those who stay at the higher level with 
WHAT and don’t get too distracted by HOW have more 
successful long term engineering careers.



Abstraction, E.g.

• 2:1 Mux (352)

• Interface

• Implementations

– Gates (fast or slow), pass transistors
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What’s the Big Deal?

• Tower of abstraction

• Complex interfaces 
implemented by layers below

• Abstraction hides detail

• Hundreds of engineers build 
one product

• Complexity unmanageable 
otherwise

Quantum Physics

Transistors & Devices

Logic Gates & Memory

Von Neumann Machine

x86 Machine  Primitives

Visual C++

Firefox, MS Excel

Windows 7



Basic Division of Hardware

• In space (vs. time)

Control

Processor

Data

path

Memory

Output

Input



Basic Division of Hardware

• In time (vs. space)

– Fetch instruction from memory add r1, r2, r3

– Decode the instruction – what does this mean?

– Read input operands read r2, r3

– Perform operation add

– Write results write to r1

– Determine the next instruction pc := pc + 4



Building Computer Chips

• Complex multi-step process
– Slice silicon ingots into wafers

– Process wafers into patterned wafers

– Dice patterned wafers into dies

– Test dies, select good dies

– Bond to package

– Test parts

– Ship to customers and make money



Building Computer Chips



Performance vs. Design Time

• Time to market is critically important

• E.g., a new design may take 3 years

– It will be 3 times faster

– But if technology improves 50%/year

– In 3 years 1.53 = 3.38

– So the new design is worse!

(unless it also employs new technology)



Bottom Line

• Designers must know BOTH software and 
hardware

• Both contribute to layers of abstraction

• IC costs and performance

• Compilers and Operating Systems
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Forecast

• Time and performance

• Iron Law

• MIPS and MFLOPS

• Which programs and how to average

• Amdahl’s law
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Performance and Cost

Airplane Passengers Range (mi) Speed  (mph)

Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

• Which of the following airplanes has the best 
performance?

• How much faster is the Concorde vs. the 747

• How much bigger is the 747 vs. DC-8?
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Performance and Cost 

• Which computer is fastest?

• Not so simple

– Scientific simulation – FP performance

–Program development – Integer performance

–Database workload – Memory, I/O
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Performance of Computers

• Want to buy the fastest computer for what 
you want to do?

– Workload is all-important

– Correct measurement and analysis

• Want to design the fastest computer for what 
the customer wants to pay?

– Cost is an important criterion
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Defining Performance

• What is important to whom?

• Computer system user

– Minimize elapsed time for program:

tresp = tend – tstart

– Called response time

• Computer center manager

– Maximize completion rate = #jobs/second

– Called throughput
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Response Time vs. Throughput

• Is throughput = 1/avg. response time?
– Only if NO overlap

– Otherwise, throughput > 1/avg. response time

– E.g. a lunch buffet – assume 5 entrees

– Each person takes 2 minutes/entrée

– Throughput is 1 person every 2 minutes

– BUT time to fill up tray is 10 minutes

– Why and what would the throughput be otherwise?
• 5 people simultaneously filling tray (overlap)

• Without overlap, throughput = 1/10
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What is Performance for us?

• For computer architects

– CPU time = time spent running a program

• Intuitively, bigger should be faster, so:

– Performance = 1/X time, where X is response, CPU 
execution, etc.

• Elapsed time = CPU time + I/O wait

• We will concentrate on CPU time
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Improve Performance

• Improve (a) response time or (b) throughput?

– Faster CPU

• Helps both (a) and (b)

– Add more CPUs

• Helps (b) and perhaps (a) due to less queueing
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Performance Comparison

• Machine A is n times faster than machine B iff

perf(A)/perf(B) = time(B)/time(A) = n

• Machine A is x% faster than machine B iff

perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

• E.g. time(A) = 10s, time(B) = 15s

– 15/10 = 1.5 => A is 1.5 times faster than B

– 15/10 = 1.5 => A is 50% faster than B

29



Breaking Down Performance

• A program is broken into instructions

– H/W is aware of instructions, not programs

• At lower level, H/W breaks instructions into cycles

– Lower level state machines change state every cycle

• For example:

– 1GHz Snapdragon runs 1000M cycles/sec, 1 cycle = 1ns

– 2.5GHz Core i7 runs 2.5G cycles/sec, 1 cycle = 0.25ns
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Iron Law

Processor Performance  =   ---------------
Time

Program

Architecture --> Implementation --> Realization

Compiler Designer      Processor Designer         Chip Designer

Instructions Cycles

Program Instruction

Time

Cycle

(code size)

= X X

(CPI) (cycle time)
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Iron Law

• Instructions/Program

– Instructions executed, not static code size

– Determined by algorithm, compiler, ISA

• Cycles/Instruction

– Determined by ISA and CPU organization

– Overlap among instructions reduces this term

• Time/cycle

– Determined by technology, organization, clever circuit 
design
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Our Goal

• Minimize time which is the product, NOT 
isolated terms

• Common error to miss terms while devising 
optimizations

– E.g. ISA change to decrease instruction count

– BUT leads to CPU organization which makes clock 
slower

• Bottom line: terms are inter-related
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Other Metrics

• MIPS and MFLOPS

• MIPS = instruction count/(execution time x 106)

= clock rate/(CPI x 106)

• But MIPS has serious shortcomings
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Problems with MIPS

• E.g. without FP hardware, an FP op may take 50 
single-cycle instructions

• With FP hardware, only one 2-cycle instruction

⚫ Thus, adding FP hardware:
– CPI increases (why?)

– Instructions/program 
decreases (why?)

– Total execution time 
decreases

⚫ BUT, MIPS gets worse!

50/50 => 2/1

50 => 1

50 => 2

50 MIPS => 2 MIPS
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Problems with MIPS

• Ignores program

• Usually used to quote peak performance

– Ideal conditions => guaranteed not to exceed!

• When is MIPS ok?

– Same compiler, same ISA

– E.g. same binary running on AMD Jaguar, Intel 
Core i7

– Why? Instr/program is constant and can be 
factored out
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Other Metrics

• MFLOPS = FP ops in program/(execution time x 106)

• Assuming FP ops independent of compiler and 
ISA
– Often safe for numeric codes: matrix size 

determines # of FP ops/program

– However, not always safe:
• Missing instructions (e.g. FP divide)

• Optimizing compilers

• Relative MIPS and normalized MFLOPS
– Adds to confusion
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Rules

• Use ONLY Time

• Beware when reading, especially if details are 
omitted

• Beware of Peak

– “Guaranteed not to exceed”
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Iron Law Example

• Machine A: clock 1ns, CPI 2.0, for program x

• Machine B: clock 2ns, CPI 1.2, for program x

• Which is faster and how much?
Time/Program = instr/program x cycles/instr x sec/cycle

Time(A) = N x 2.0 x 1 = 2N

Time(B) = N x 1.2 x 2 = 2.4N

Compare: Time(B)/Time(A) = 2.4N/2N = 1.2

• So, Machine A is 20% faster than Machine B for this 
program
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Iron Law Example

Keep clock(A) @ 1ns and clock(B)  @2ns

For equal performance, if CPI(B)=1.2, what is 
CPI(A)?

Time(B)/Time(A) = 1 = (Nx2x1.2)/(Nx1xCPI(A))

CPI(A) = 2.4

40



Iron Law Example

• Keep CPI(A)=2.0 and CPI(B)=1.2

• For equal performance, if clock(B)=2ns, 
what is clock(A)?

Time(B)/Time(A) = 1 = (N x 2.0 x clock(A))/(N x 1.2 x 2)

clock(A) = 1.2ns
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Summary
• Time and performance: Machine A n times 

faster than Machine B

– Iff Time(B)/Time(A) = n

• Iron Law: Performance = Time/program =

• Other Metrics: MIPS and MFLOPS
– Beware of peak and omitted details

Instructions Cycles

Program Instruction

Time

Cycle

(code size)

= X X

(CPI) (cycle time)
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Which Programs

• Execution time of what program?

• Best case – you always run the same set of programs

– Port them and time the whole workload

• In reality, use benchmarks

– Programs chosen to measure performance

– Predict performance of actual workload

– Saves effort and money

Representative? Honest? Benchmarketing…
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How to Average

• One answer: for total execution time, how 
much faster is B? 

1001 / 110 = 9.1x

Machine A Machine B

Program 1 1 10

Program 2 1000 100

Total 1001 110
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How to Average

• Another: arithmetic mean (same result)

• Arithmetic mean of times: 

• AM(A) = 1001/2 = 500.5

• AM(B) = 110/2 = 55

• Speedup: 500.5/55 = 9.1x

• Valid only if programs run equally often, so use 
weighted arithmetic mean:
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Other Averages

• E.g., 30 mph for first 10 miles, then 90 mph for 
next 10 miles, what is average speed?

• Average speed = (30+90)/2 WRONG

• Average speed = total distance / total time

= (20 / (10/30 + 10/90))

= 45 mph
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Harmonic Mean

• Harmonic mean of rates =

• Use HM if forced to start and end with rates (e.g. 
reporting MIPS or MFLOPS)

• Why?

– Rate has time in denominator

– Mean should be proportional to inverse of sums of 
time (not sum of inverses)

– See: J.E. Smith, “Characterizing computer performance 
with a single number,” CACM Volume 31 ,  Issue 10  
(October 1988), pp. 1202-1206.
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Dealing with Ratios

• If we take ratios with respect to machine A

Machine A Machine B

Program 1 1 10

Program 2 1000 100

Total 1001 110

Machine A Machine B

Program 1 1 10

Program 2 1 0.1

Average 1 5.05
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Dealing with Ratios

• Avg. wrt. machine A: A is 1, 5.05
• If we take ratios with respect to machine B

• Can’t both be true!!!
• Don’t use arithmetic mean on ratios!

Machine A Machine B

Program 1 0.1 1

Program 2 10 1

Average 5.05 1
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Geometric Mean

• Use geometric mean for ratios

• Geometric mean of ratios = 

• Independent of reference machine

• In the example, GM for machine a is 1, for 
machine B is also 1

– Normalized with respect to either machine
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But…

• GM of ratios is not proportional to total time

• AM in example says machine B is 9.1 times faster

• GM says they are equal

• If we took total execution time, A and B are equal 
only if

– Program 1 is run 100 times more often than program 2

• Generally, GM will mispredict for three or more 
machines
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Summary

• Use AM for times

• Use HM if forced to use rates

• Use GM if forced to use ratios

• Best of all, use unnormalized numbers to 
compute time
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Benchmarks: SPEC2000

• System Performance Evaluation Cooperative

– Formed in 80s to combat benchmarketing

– SPEC89, SPEC92, SPEC95, SPEC2000, SPEC2006

• 12 integer and 14 floating-point programs

– Sun Ultra-5 300MHz reference machine has score 
of 100

– Report GM of ratios to reference machine
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Benchmarks: SPEC CINT2000

Benchmark Description

164.gzip Compression

175.vpr FPGA place and route

176.gcc C compiler

181.mcf Combinatorial optimization

186.crafty Chess

197.parser Word processing, grammatical analysis

252.eon Visualization (ray tracing)

253.perlbmk PERL script execution

254.gap Group theory interpreter

255.vortex Object-oriented database

256.bzip2 Compression

300.twolf Place and route simulator
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Benchmarks: SPEC CFP2000
Benchmark Description

168.wupwise Physics/Quantum Chromodynamics

171.swim Shallow water modeling

172.mgrid Multi-grid solver: 3D potential field

173.applu Parabolic/elliptic PDE

177.mesa 3-D graphics library

178.galgel Computational Fluid Dynamics

179.art Image Recognition/Neural Networks

183.equake Seismic Wave Propagation Simulation

187.facerec Image processing: face recognition

188.ammp Computational chemistry

189.lucas Number theory/primality testing

191.fma3d Finite-element Crash Simulation

200.sixtrack High energy nuclear physics accelerator design

301.apsi Meteorology: Pollutant distribution
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Benchmark Pitfalls

• Benchmark not representative

– Your workload is I/O bound, SPEC is useless

• Benchmark is too old

– Benchmarks age poorly; benchmarketing pressure 
causes vendors to optimize compiler, hardware, 
software to match benchmarks

– Need to be periodically refreshed
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Amdahl’s Law

• Motivation for optimizing common case
• Speedup = old time / new time = new rate / old rate

• Let an optimization speed fraction f of time by a 
factor of s
New_time = (1-f) x old_time + (f/s) x old_time

Speedup = old_time / new_time

Speedup = old_time / ((1-f) x old_time + (f/s) x old_time)
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impact.



Amdahl’s Law Example

• Your boss asks you to improve performance by:

– Improve the ALU used 95% of time by 10%

– Improve memory pipeline used 5% of time by 10x
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1
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f s Speedup

95% 1.10 1.094

5% 10 1.047

5% ∞ 1.052



Amdahl’s Law: Limit

• Make common case fast:
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Amdahl’s Law: Limit

• Consider uncommon case!

• If (1-f) is nontrivial

– Speedup is limited!

• Particularly true for exploiting parallelism in the 
large, where large s is not cheap

– GPU with e.g. 1024 processors (shader cores)

– Parallel portion speeds up by s (1024x)

– Serial portion of code (1-f) limits speedup

E.g. 10% serial portion: 1/0.1 = 10x speedup with 1000 cores
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Summary

• Benchmarks: SPEC2000
• Summarize performance:

– AM for time

– HM for rate

– GM for ratio

• Amdahl’s Law:

s

f
f

Speedup

+−

=

1

1

62


