
ECE/CS 552: Course Overview &
Context

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

552 In Context

• Prerequisites
– 252/352 – gates, logic, memory, organization

– 252/354 – high-level language down to machine
language interface or instruction set architecture (ISA)

• This course – 552 – puts it all together
– Implement the logic that provides ISA interface

– Must implement datapath and control

– You will understand…no mystery

– Manage tremendous complexity with abstraction

Why Take 552?

• To become a computer designer

– Alumni of this class helped design your computer

• To learn what is under the hood of a computer

– Innate curiosity

– To write better code/applications

– To write better system software (O/S, compiler, etc.)

• Because it is intellectually fascinating!

– What is the most complex man-made device?

Abstraction and Complexity

• Abstraction helps us
manage complexity

• Complex interfaces

– Specify what to do

– Hide details of how

⚫ Goal: remove mystery

Semiconductor devices

ECE335

Electronic circuits

ECE340

Digital Logic

ECE352

Machine Language (ISA)

CS354

Compiler

CS536

Application Program

CS302

Operating System

CS537Scope

of this

course

Computer Architecture

• Exercise in engineering tradeoff analysis
– Find the fastest/cheapest/power-efficient/etc. solution

– Optimization problem with 100s of variables

• All the variables are changing
– At non-uniform rates

– With inflection points

– Only one guarantee: Today’s right answer will be wrong
tomorrow

• Two high-level effects:
– Technology push

– Application Pull

Technology Push

• What do these two intervals have in common?

– 1947-1999 (53 years)

– 2000-2001 (2 years)

⚫ Answer: Equal progress in processor speed!

⚫ The power of exponential growth!

⚫ Driven by Moore’s Law

– Device per chips doubles every 18-24 months

⚫ Computer architects work to turn the additional
resources into speed/power savings/functionality!

Some History

Date Event Comments

1939 First digital computer John Atanasoff (UW PhD ’30)

1947 1st transistor Bell Labs

1958 1st IC Jack Kilby (MSEE ’50) @TI

Winner of 2000 Nobel prize

1971 1st microprocessor Intel

1974 Intel 4004 2300 transistors

1978 Intel 8086 29K transistors

1989 Intel 80486 1.M transistors, pipelined

1995 Intel Pentium Pro 5.5M transistors

2005 Intel Montecito 1B transistors

Performance Growth

Unmatched by any other industry !

Doubling every 18 months (1982-1996): 800x
– Cars travel at 44,000 mph and get 16,000 mpg

– Air travel: LA to NY in 22 seconds (MACH 800)

– Wheat yield: 80,000 bushels per acre

⚫ Doubling every 24 months (1971-1996): 9,000x

– Cars travel at 600,000 mph, get 150,000 mpg

– Air travel: LA to NY in 2 seconds (MACH 9,000)

– Wheat yield: 900,000 bushels per acre

Technology Push

• Technology advances at varying rates
– E.g. DRAM capacity increases at 60%/year

– But DRAM speed only improves 10%/year

– Creates gap with processor frequency!

• Inflection points
– Crossover causes rapid change

– E.g. enough devices for multicore processor (2001)

• Current issues causing an “inflection point”
– Power consumption

– Reliability

– Variability

Application Pull

• Corollary to Moore’s Law:
Cost halves every two years

In a decade you can buy a computer for less than its sales
tax today. –Jim Gray

• Computers cost-effective for
– National security – weapons design

– Enterprise computing – banking

– Departmental computing – computer-aided design

– Personal computer – spreadsheets, email, web

– Pervasive computing – prescription drug labels

Abstraction

• Difference between interface and
implementation

– Interface: WHAT something does

– Implementation: HOW it does so

• Career note…Those who stay at the higher level with
WHAT and don’t get too distracted by HOW have more
successful long term engineering careers.

Abstraction, E.g.

• 2:1 Mux (352)

• Interface

• Implementations

– Gates (fast or slow), pass transistors

Mux
S

X Y

F

S F

0 X

1 Y

What’s the Big Deal?

• Tower of abstraction

• Complex interfaces
implemented by layers below

• Abstraction hides detail

• Hundreds of engineers build
one product

• Complexity unmanageable
otherwise

Quantum Physics

Transistors & Devices

Logic Gates & Memory

Von Neumann Machine

x86 Machine Primitives

Visual C++

Firefox, MS Excel

Windows 7

Basic Division of Hardware

• In space (vs. time)

Control

Processor

Data

path

Memory

Output

Input

Basic Division of Hardware

• In time (vs. space)

– Fetch instruction from memory add r1, r2, r3

– Decode the instruction – what does this mean?

– Read input operands read r2, r3

– Perform operation add

– Write results write to r1

– Determine the next instruction pc := pc + 4

Building Computer Chips

• Complex multi-step process
– Slice silicon ingots into wafers

– Process wafers into patterned wafers

– Dice patterned wafers into dies

– Test dies, select good dies

– Bond to package

– Test parts

– Ship to customers and make money

Building Computer Chips

Performance vs. Design Time

• Time to market is critically important

• E.g., a new design may take 3 years

– It will be 3 times faster

– But if technology improves 50%/year

– In 3 years 1.53 = 3.38

– So the new design is worse!

(unless it also employs new technology)

Bottom Line

• Designers must know BOTH software and
hardware

• Both contribute to layers of abstraction

• IC costs and performance

• Compilers and Operating Systems

ECE/CS 552: Performance and Cost

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Forecast

• Time and performance

• Iron Law

• MIPS and MFLOPS

• Which programs and how to average

• Amdahl’s law

21

Performance and Cost

Airplane Passengers Range (mi) Speed (mph)

Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

• Which of the following airplanes has the best
performance?

• How much faster is the Concorde vs. the 747

• How much bigger is the 747 vs. DC-8?

22

Performance and Cost

• Which computer is fastest?

• Not so simple

– Scientific simulation – FP performance

–Program development – Integer performance

–Database workload – Memory, I/O

23

Performance of Computers

• Want to buy the fastest computer for what
you want to do?

– Workload is all-important

– Correct measurement and analysis

• Want to design the fastest computer for what
the customer wants to pay?

– Cost is an important criterion

24

Defining Performance

• What is important to whom?

• Computer system user

– Minimize elapsed time for program:

tresp = tend – tstart

– Called response time

• Computer center manager

– Maximize completion rate = #jobs/second

– Called throughput

25

Response Time vs. Throughput

• Is throughput = 1/avg. response time?
– Only if NO overlap

– Otherwise, throughput > 1/avg. response time

– E.g. a lunch buffet – assume 5 entrees

– Each person takes 2 minutes/entrée

– Throughput is 1 person every 2 minutes

– BUT time to fill up tray is 10 minutes

– Why and what would the throughput be otherwise?
• 5 people simultaneously filling tray (overlap)

• Without overlap, throughput = 1/10

26

What is Performance for us?

• For computer architects

– CPU time = time spent running a program

• Intuitively, bigger should be faster, so:

– Performance = 1/X time, where X is response, CPU
execution, etc.

• Elapsed time = CPU time + I/O wait

• We will concentrate on CPU time

27

Improve Performance

• Improve (a) response time or (b) throughput?

– Faster CPU

• Helps both (a) and (b)

– Add more CPUs

• Helps (b) and perhaps (a) due to less queueing

28

Performance Comparison

• Machine A is n times faster than machine B iff

perf(A)/perf(B) = time(B)/time(A) = n

• Machine A is x% faster than machine B iff

perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

• E.g. time(A) = 10s, time(B) = 15s

– 15/10 = 1.5 => A is 1.5 times faster than B

– 15/10 = 1.5 => A is 50% faster than B

29

Breaking Down Performance

• A program is broken into instructions

– H/W is aware of instructions, not programs

• At lower level, H/W breaks instructions into cycles

– Lower level state machines change state every cycle

• For example:

– 1GHz Snapdragon runs 1000M cycles/sec, 1 cycle = 1ns

– 2.5GHz Core i7 runs 2.5G cycles/sec, 1 cycle = 0.25ns

30

Iron Law

Processor Performance = ---------------
Time

Program

Architecture --> Implementation --> Realization

Compiler Designer Processor Designer Chip Designer

Instructions Cycles

Program Instruction

Time

Cycle

(code size)

= X X

(CPI) (cycle time)

31

Iron Law

• Instructions/Program

– Instructions executed, not static code size

– Determined by algorithm, compiler, ISA

• Cycles/Instruction

– Determined by ISA and CPU organization

– Overlap among instructions reduces this term

• Time/cycle

– Determined by technology, organization, clever circuit
design

32

Our Goal

• Minimize time which is the product, NOT
isolated terms

• Common error to miss terms while devising
optimizations

– E.g. ISA change to decrease instruction count

– BUT leads to CPU organization which makes clock
slower

• Bottom line: terms are inter-related

33

Other Metrics

• MIPS and MFLOPS

• MIPS = instruction count/(execution time x 106)

= clock rate/(CPI x 106)

• But MIPS has serious shortcomings

34

Problems with MIPS

• E.g. without FP hardware, an FP op may take 50
single-cycle instructions

• With FP hardware, only one 2-cycle instruction

⚫ Thus, adding FP hardware:
– CPI increases (why?)

– Instructions/program
decreases (why?)

– Total execution time
decreases

⚫ BUT, MIPS gets worse!

50/50 => 2/1

50 => 1

50 => 2

50 MIPS => 2 MIPS

35

Problems with MIPS

• Ignores program

• Usually used to quote peak performance

– Ideal conditions => guaranteed not to exceed!

• When is MIPS ok?

– Same compiler, same ISA

– E.g. same binary running on AMD Jaguar, Intel
Core i7

– Why? Instr/program is constant and can be
factored out

36

Other Metrics

• MFLOPS = FP ops in program/(execution time x 106)

• Assuming FP ops independent of compiler and
ISA
– Often safe for numeric codes: matrix size

determines # of FP ops/program

– However, not always safe:
• Missing instructions (e.g. FP divide)

• Optimizing compilers

• Relative MIPS and normalized MFLOPS
– Adds to confusion

37

Rules

• Use ONLY Time

• Beware when reading, especially if details are
omitted

• Beware of Peak

– “Guaranteed not to exceed”

38

Iron Law Example

• Machine A: clock 1ns, CPI 2.0, for program x

• Machine B: clock 2ns, CPI 1.2, for program x

• Which is faster and how much?
Time/Program = instr/program x cycles/instr x sec/cycle

Time(A) = N x 2.0 x 1 = 2N

Time(B) = N x 1.2 x 2 = 2.4N

Compare: Time(B)/Time(A) = 2.4N/2N = 1.2

• So, Machine A is 20% faster than Machine B for this
program

39

Iron Law Example

Keep clock(A) @ 1ns and clock(B) @2ns

For equal performance, if CPI(B)=1.2, what is
CPI(A)?

Time(B)/Time(A) = 1 = (Nx2x1.2)/(Nx1xCPI(A))

CPI(A) = 2.4

40

Iron Law Example

• Keep CPI(A)=2.0 and CPI(B)=1.2

• For equal performance, if clock(B)=2ns,
what is clock(A)?

Time(B)/Time(A) = 1 = (N x 2.0 x clock(A))/(N x 1.2 x 2)

clock(A) = 1.2ns

41

Summary
• Time and performance: Machine A n times

faster than Machine B

– Iff Time(B)/Time(A) = n

• Iron Law: Performance = Time/program =

• Other Metrics: MIPS and MFLOPS
– Beware of peak and omitted details

Instructions Cycles

Program Instruction

Time

Cycle

(code size)

= X X

(CPI) (cycle time)

42

ECE/CS 552: Benchmarks, Means
and Amdahl’s Law

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Which Programs

• Execution time of what program?

• Best case – you always run the same set of programs

– Port them and time the whole workload

• In reality, use benchmarks

– Programs chosen to measure performance

– Predict performance of actual workload

– Saves effort and money

Representative? Honest? Benchmarketing…

44

How to Average

• One answer: for total execution time, how
much faster is B?

1001 / 110 = 9.1x

Machine A Machine B

Program 1 1 10

Program 2 1000 100

Total 1001 110

45

How to Average

• Another: arithmetic mean (same result)

• Arithmetic mean of times:

• AM(A) = 1001/2 = 500.5

• AM(B) = 110/2 = 55

• Speedup: 500.5/55 = 9.1x

• Valid only if programs run equally often, so use
weighted arithmetic mean:

n
itime

n

i

1
)(

1










=

()
n

itimeiweight
n

i

1
)()(

1











=

46

Other Averages

• E.g., 30 mph for first 10 miles, then 90 mph for
next 10 miles, what is average speed?

• Average speed = (30+90)/2 WRONG

• Average speed = total distance / total time

= (20 / (10/30 + 10/90))

= 45 mph

47

Harmonic Mean

• Harmonic mean of rates =

• Use HM if forced to start and end with rates (e.g.
reporting MIPS or MFLOPS)

• Why?

– Rate has time in denominator

– Mean should be proportional to inverse of sums of
time (not sum of inverses)

– See: J.E. Smith, “Characterizing computer performance
with a single number,” CACM Volume 31 , Issue 10
(October 1988), pp. 1202-1206.









=

n

i nrate

n

1)(

1

48

Dealing with Ratios

• If we take ratios with respect to machine A

Machine A Machine B

Program 1 1 10

Program 2 1000 100

Total 1001 110

Machine A Machine B

Program 1 1 10

Program 2 1 0.1

Average 1 5.05

49

Dealing with Ratios

• Avg. wrt. machine A: A is 1, 5.05
• If we take ratios with respect to machine B

• Can’t both be true!!!
• Don’t use arithmetic mean on ratios!

Machine A Machine B

Program 1 0.1 1

Program 2 10 1

Average 5.05 1

50

Geometric Mean

• Use geometric mean for ratios

• Geometric mean of ratios =

• Independent of reference machine

• In the example, GM for machine a is 1, for
machine B is also 1

– Normalized with respect to either machine

n

n

i

iratio
=1

)(

51

But…

• GM of ratios is not proportional to total time

• AM in example says machine B is 9.1 times faster

• GM says they are equal

• If we took total execution time, A and B are equal
only if

– Program 1 is run 100 times more often than program 2

• Generally, GM will mispredict for three or more
machines

52

Summary

• Use AM for times

• Use HM if forced to use rates

• Use GM if forced to use ratios

• Best of all, use unnormalized numbers to
compute time

53

Benchmarks: SPEC2000

• System Performance Evaluation Cooperative

– Formed in 80s to combat benchmarketing

– SPEC89, SPEC92, SPEC95, SPEC2000, SPEC2006

• 12 integer and 14 floating-point programs

– Sun Ultra-5 300MHz reference machine has score
of 100

– Report GM of ratios to reference machine

54

Benchmarks: SPEC CINT2000

Benchmark Description

164.gzip Compression

175.vpr FPGA place and route

176.gcc C compiler

181.mcf Combinatorial optimization

186.crafty Chess

197.parser Word processing, grammatical analysis

252.eon Visualization (ray tracing)

253.perlbmk PERL script execution

254.gap Group theory interpreter

255.vortex Object-oriented database

256.bzip2 Compression

300.twolf Place and route simulator

55

Benchmarks: SPEC CFP2000
Benchmark Description

168.wupwise Physics/Quantum Chromodynamics

171.swim Shallow water modeling

172.mgrid Multi-grid solver: 3D potential field

173.applu Parabolic/elliptic PDE

177.mesa 3-D graphics library

178.galgel Computational Fluid Dynamics

179.art Image Recognition/Neural Networks

183.equake Seismic Wave Propagation Simulation

187.facerec Image processing: face recognition

188.ammp Computational chemistry

189.lucas Number theory/primality testing

191.fma3d Finite-element Crash Simulation

200.sixtrack High energy nuclear physics accelerator design

301.apsi Meteorology: Pollutant distribution

56

Benchmark Pitfalls

• Benchmark not representative

– Your workload is I/O bound, SPEC is useless

• Benchmark is too old

– Benchmarks age poorly; benchmarketing pressure
causes vendors to optimize compiler, hardware,
software to match benchmarks

– Need to be periodically refreshed

57

Amdahl’s Law

• Motivation for optimizing common case
• Speedup = old time / new time = new rate / old rate

• Let an optimization speed fraction f of time by a
factor of s
New_time = (1-f) x old_time + (f/s) x old_time

Speedup = old_time / new_time

Speedup = old_time / ((1-f) x old_time + (f/s) x old_time)

() 

() 

s

f
f

oldtime
s

f
oldtimef

oldtimeff
Speedup

+−

=

+−

+−
=

1

1

1

1

58

Math: If f is
small, s will
have limited

impact.

Amdahl’s Law Example

• Your boss asks you to improve performance by:

– Improve the ALU used 95% of time by 10%

– Improve memory pipeline used 5% of time by 10x

s

f
f

Speedup

+−

=

1

1

59

f s Speedup

95% 1.10 1.094

5% 10 1.047

5% ∞ 1.052

Amdahl’s Law: Limit

• Make common case fast:
f

s

f
f

s −
=

+−
→ 1

1

1

1
lim

0
1
2
3
4
5
6
7
8
9

10

0 0.2 0.4 0.6 0.8 1

f

S
p

e
e
d

u
p

60

Amdahl’s Law: Limit

• Consider uncommon case!

• If (1-f) is nontrivial

– Speedup is limited!

• Particularly true for exploiting parallelism in the
large, where large s is not cheap

– GPU with e.g. 1024 processors (shader cores)

– Parallel portion speeds up by s (1024x)

– Serial portion of code (1-f) limits speedup

E.g. 10% serial portion: 1/0.1 = 10x speedup with 1000 cores

f

s

f
f

s −
=

+−
→ 1

1

1

1
lim

61

Summary

• Benchmarks: SPEC2000
• Summarize performance:

– AM for time

– HM for rate

– GM for ratio

• Amdahl’s Law:

s

f
f

Speedup

+−

=

1

1

62

