THE UNIVERSITY

WISCONSIN

MADISON

ECE/CS 552: Pipeline Hazards

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Pipeline Hazards

* Forecast
— Program Dependences

— Data Hazards
e Stalls
* Forwarding

— Control Hazards
— Exceptions

Sequential Execution Model

 MIPS ISA requires the appearance of
sequential execution

— Precise exceptions
— True of most general purpose ISAs

Program Dependences

A true dependence between
two instructions may only
iInvolve one subcomputation
of each instruction.

il: xxxx

12: XXXX

13: XXXX

The implied sequential precedences are
an overspecification. It is sufficient but not
necessary to ensure program correctness.

Program Data Dependences

* True dependence (RAW) _

— j cannot execute until i
produces its result

* Anti-dependence (WAR) _

— j cannot write its result until i
has read its sources

 Output dependence (WAW) _

— j cannot write its result until |
has written its result

Control Dependences

e Conditional branches

— Branch must execute to determine which
instruction to fetch next

— Instructions following a conditional branch are
control dependent on the branch instruction

Example (quicksort/MIPS)

for (; (j <high) && (array[j] < array[low]) ; ++);
$10 = |
$9 = high
$6 = array
low

* oW OR R R

<addu__ $11, $11, -1

Pipeline Hazards

* Pipeline hazards
— Potential violations of program dependences
— Must ensure program dependences are not violated
* Hazard resolution
— Static: compiler/programmer guarantees correctness
— Dynamic: hardware performs checks at runtime
* Pipeline interlock

— Hardware mechanism for dynamic hazard resolution
— Must detect and enforce dependences at runtime

Pipeline Hazards

* Necessary conditions:

— WAR: write stage earlier than read stage
* |Is this possible in IF-RD-EX-MEM-WB ?
— WAW: write stage earlier than write stage
* Is this possible in IF-RD-EX-MEM-WB ?
— RAW: read stage earlier than write stage
* Is this possible in IF-RD-EX-MEM-WB?
* |f conditions not met, no need to resolve
* Check for both register and memory

Pipeline Hazard Analysis

)
Fm * Memory hazards
— RAW: Yes/No?

— WAR: Yes/No?
— WAW: Yes/No?
ALU * Register hazards
— RAW: Yes/No?
— WAR: Yes/No?
| E AW Yes/No?

1D

RD

RAW Hazard

e Earlier instruction produces a value used by a
later instruction:

— add $1, 52,53
— sub $4:$5\,$1

Cycle: |1 12 (3|4 |5|6|7 |89
Instr: 011123

—
—
—
—

add FDX‘?/\/
sub F DX [M|W

RAW Hazard - Stall

* Detect dependence and stall:
—add $1, S2, S3
— sub $4, $5, $1

Cycle: (1 (234|567 (8|9
Instr:

o

= =

N -

CONN

add |F [D|X|MWL_|

sub FIDIX|M

Control Dependence

* One instruction affects which executes next

— sw $4, 0($5)

— bne $2, $3, loop

— sub $6, $7, $8
Cycle: (1 (234|516 |7(8]9(1|1 /1|1
Instr: 01123
SW F|DI X MW
bne FID M| W
sub F‘/b XMW

Control Dependence - Stall

* Detect dependence and stall

— sw $4, 0($5)

— bne $2, S3, loop

— sub S6, S7, S8

Cycle: |1 (2(3|4|5|6|7(8]9(1]1|1
Instr: 0112

CONN

SW FIDIX|MW
bne FID

X
A
<
O =

sub =

Pipelined Control

* Controlled by different instructions

* Decode instructions and pass the signals down
the pipe

e Control sequencing is embedded in the
pipeline
— No explicit FSM
— Instead, distributed FSM

Instruction

_>C

IF/1D

Pipelined Control

ontrol

WB

EX

ID/EX

WB

EXIMEM

WB

MEM/WB

RAW Hazards

* Must first detect RAW hazards
— Pipeline analysis proves that WAR/WAW don’t occur

ID/EX.WriteRegister = IF/ID.ReadReqgisterl
ID/EX.WriteRegister = IF/ID.ReadRegister2
EX/MEM.WriteRegister = IF/ID.ReadRegisterl
EX/MEM.WriteRegister = IF/ID.ReadRegister2
MEM/WB.WriteRegister = IF/ID.ReadRegisterl
MEM/WB.WriteRegister = IF/ID.ReadRegister2

RAW Hazards

* Not all hazards because
— WriteRegister not used (e.g. sw)
— ReadRegister not used (e.g. addi, jump)
— Do something only if necessary

RAW Hazards

e Hazard Detection Unit

— Several 5-bit comparators

* Response? Stall pipeline
— Instructions in IF and ID stay
— |IF/ID pipeline latch not updated
— Send ‘nop’ down pipeline (called a bubble)
— PCWrite, IF/IDWrite, and nop mux

RAW Hazard Forwarding

* A better response — forwarding
— Also called bypassing

 Comparators ensure register is read after it is
written
* |nstead of stalling until write occurs

— Use mux to select forwarded value rather than
register value

— Control mux with hazard detection logic

Forwarding Paths

. . WISCONSIN
(ALU instructions) 7%
|
\
IF I
v
ID I
VA |
RD | itl: =Rl | i+2: =—RI| i+3: <—RlI
AN 39
c|b ALU LRl =— 1:e_ RI|it2: <—RI
I
I
| ALU MEM PRI < | itl: -
FORWARDING
| L J
PATHS | . .
: WB 1: Rl —=
L — == == J (i —it+1) i —it+2) i —it+3)
Forwarding Forwarding i writes R1
reads Rl

© 2005 Mikko Lipasti 21

Write before Read RF

* Register file design
— 2-phase clocks common
— Write RF on first phase
— Read RF on second phase

* Hence, same cycle:
— Write $1
— Read $1
 No bypass needed
— If read before write or DFF-based, need bypass

File

A
A — |—’
ALU |

®
I B
e |
|§§§E?EE?%E?E??E?EE??E?E??E?E‘EiiE?EE?%E?E??E?EE??E?E??E?EEI

© 2005 Mikko Lipasti 23

!

Forwarding Paths

)

)

(Load instructions)

MMMMMMM

RD

I 1+1: <«— RI1

i+1;: *“— RI1

1+2: —— R1

@ rATH(s)

e |d ALU |
LOAD 1:R1 <« MEM[]
FORWARDING

1+1: «a— RI1

MEM

i:-R1 <— MEM[]

WB I

(i i+1)

Stall i+1

(i—>itl)
Forwarding

via Path d

© 2005 Mikko Lipasti

i:R1 <— MEM][]

(i >i+2)

i writes R1
before i+2
reads R1

24

Implementation of Load Forwarding

Reqister
Igile

Load —

? Stall T

IF,ID,RD

Control Flow Hazards

* Control flow instructions
— branches, jumps, jals, returns
— Can’t fetch until branch outcome known
— Too late for next IF

Control Flow Hazards

e What to do?

— Always stall
— Easy to implement
— Performs poorly

— 1/6% instructions are branches
e each branch takes 3 cycles

—CPI=1+3x1/6 =1.5 (lower bound)

Control Flow Hazards

Predict branch not taken

Send sequential instructions down pipeline
Kill instructions later if incorrect

Must stop memory accesses and RF writes

Late flush of instructions on misprediction

— Complex
— Global signal (wire delay)

Control Flow Hazards

* Even better but more complex
— Predict taken
— Predict both (eager execution)

— Predict one or the other dynamically
* Adapt to program branch patterns

* Lots of chip real estate these days
— Core i7, ARM A15

e Current research topic
— More later, covered in detail in ECE752

Control Flow Hazards

* Another option: delayed branches
— Always execute following instruction
— “delay slot” (later example on MIPS pipeline)
— Put useful instruction there, otherwise ‘nop’

e A mistake to cement this into ISA

— Just a stopgap (one cycle, one instruction)

— Superscalar processors (later)
* Delay slot just gets in the way

Exceptions and Pipelining

e add S1, S2, S3 overflows
* A surprise branch

— Earlier instructions flow to completion

— Kill later instructions

— Save PCin EPC, set PC to EX handler, etc.
* Costs a lot of designer sanity

— 554 teams that try this sometimes fail

Exceptions

 Even worse: in one cycle
— 1/0 interrupt
— User trap to OS (EX)
— lllegal instruction (ID)
— Arithmetic overflow
— Hardware error
— Etc.

* |Interrupt priorities must be supported

Pipeline Hazards

Program Dependences

Data Hazards
— Stalls
— Forwarding

Control Hazards
Exceptions

