THE UNIVERSITY

WISCONSIN

MADISON

ECE/CS 552: Pipelining to
Superscalar

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Pipelining to Superscalar

* Forecast
— Real pipelines
— IBM RISC Experience
— The case for superscalar
— Instruction-level parallel machines
— Superscalar pipeline organization
— Superscalar pipeline design

MIPS R2000/R3000 Pipeline

Stage |Phase |Function performed
IF 0, Translate virtual instr. addr. using 'TLE}

0 Access I-cache \
RD 0, Return instruction from I-cache, chegqf tags & parity

Read RF; if branch, generate target

ALU ij StartALU op; if branch, check condition .
@, | |Finish ALU op; if ld/st, translate addr N
MEM| |¢@, “TAccess D-cache
P Return data from D-cache, check tags & parity
WB O Write RF

05

Intel 1486 5-stage Pipeline

Stage Function Performed
|F Fetch instruction from 32B prefetch buffer
(separate fetch unit fills and flushes prefetch buffer)
ID-1 Translate instr. Into control signals or microcode address
Initiate address generation and memory access
|ID-2 Access microcode memory
Send microinstruction(s) to execute unit
EX Execute ALU and memory operations

WB

Write back to RF

IBM RISC Experience [Agerwala and Cocke 1987]

* Internal IBM study: Limits of a scalar pipeline?
* Memory Bandwidth

— Fetch 1 instr/cycle from I-cache

— 40% of instructions are load/store (D-cache)
e Code characteristics (dynamic)

— Loads — 25%

— Stores 15%

— ALU/RR - 40%

— Branches & jumps — 20%

* 1/3 unconditional (always taken)
* 1/3 conditional taken, 1/3 conditional not taken

IBM Experience

* Cache Performance
— Assume 100% hit ratio (upper bound)
— Cache latency: | = D = 1 cycle default
* Load and branch scheduling

— Loads

* 25% cannot be scheduled (delay slot empty)
* 65% can be moved back 1 or 2 instructions
e 10% can be moved back 1 instruction

— Branches & jumps

e Unconditional — 100% schedulable (fill one delay slot)
* Conditional — 50% schedulable (fill one delay slot)

CPI Optimizations

 Goal and impediments
— CPI =1, prevented by pipeline stalls
* No cache bypass of RF, no load/branch scheduling
— Load penalty: 2 cycles: 0.25 x 2 = 0.5 CPI
— Branch penalty: 2 cycles: 0.2 x 2/3 x 2 =0.27 CPI
— Total CPI: 1 + 0.5 +0.27 =1.77 CPI
* Bypass, no load/branch scheduling
— Load penalty: 1 cycle: 0.25 x 1 = 0.25 CPI
— Total CPI: 1 +0.25+ 0.27 = 1.52 CPI

More CPI Optimizations

* Bypass, scheduling of loads/branches

— Load penalty:

* 65% + 10% = 75% moved back, no penalty

* 25% =>1 cycle penalty

 0.25x0.25x1 =0.0625 CPI
— Branch Penalty

* 1/3 unconditional 100% schedulable => 1 cycle
1/3 cond. not-taken, => no penalty (predict not-taken)
1/3 cond. Taken, 50% schedulable => 1 cycle
1/3 cond. Taken, 50% unschedulable => 2 cycles
0.20x[1/3x1+1/3x0.5x1+1/3x0.5x2]=0.167

* Total CPI: 1 +0.063 +0.167 =1.23 CPI

Simplify Branches

* Assume 90% can be PC-relative
— No register indirect, no register access
— Separate adder (like MIPS R3000)
— Branch penalty reduced

* Total CPI: 1+ 0.063 + 0.085 =1.15 CPI =0.87 IPC

PC-relative |Schedulable |Penalty
Yes (90%) |Yes (50%) |0 cycle
Yes (90%) [No (50%) |1 cycle
No (10%) |Yes (50%) |1 cycle
No (10%) No (50%) |2 cycles

Processor Performance

Processor Performance = ---------------
Program

Instructions « Cycles | Time
Program Instruction Cycle

(code size) (CPI) (cycle time)
* In the 1980’s (decade of pipelining):
— CPI: 5.0=>1.15

* Inthe 1990’s (decade of superscalar):
— CPI: 1.15 => 0.5 (best case)

Revisit Amdahl’s Law

No. of
Processors

«— h—»=

“—l-h—h

1

l-f

Time
'

h = fraction of time in serial code
f = fraction that is vectorizable

v = speedup for f
Overall speedup:

Revisit Amdahl’s Law

e Sequential bottleneck

e Even if vis infinite

— Performance limited by nonvectorizable
portion (1-f)

A

N L

No. of
Processors

Time
| 3

Pipelined Performance Model

A
N —

Pipeline
Depth

1

l«—1-0 >|< g >

g = fraction of time pipeline is filled

1-g = fraction of time pipeline is not filled
(stalled)

Pipelined Performance Model

N —+—
Pipeline
Depth
1

ja—1-g >»|< g >

g = fraction of time pipeline is fillec

1-g = fraction of time pipeline is not filled
(stalled)

Pipelined Performance Model

A
N ——

Pipeline
Depth

1

ja— 1-9 >»|< g »I

* Tyranny of Amdahl’s Law [Bob Colwell]

— When g is even slightly below 100%, a big performance
hit will result

— Stalled cycles are the key adversary and must be
minimized as much as possible

Motivation for Superscalar

[Agerwala and Cocke]

[

a E E

— . .

L A =V A S A 7

© : n=6,s=2_. -~ -

Fap e RN NS Sl E
E_-..—P‘_.-_'_':' :
1 e e ypical Range T
ﬂ i i i i
0 02 0.4 0.6 0.8]

Vectorizabllity f

Superscalar Proposal

* Moderate tyranny of Amdahl’s Law
— Ease sequential bottleneck
— More generally applicable
— Robust (less sensitive to f)
— Revised Amdahl’s Law:

Limits on Instruction Level
Parallelism (ILP)

Weiss and Smith [1984] 1.58

Sohi and Vajapeyam [1987] 1.81

Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)
Tjaden and Flynn [1973] 1.96

Uht [1986] 2.00

Smith et al. [1989] 2.00

Jouppi and Wall [1988] 2.40

Johnson [1991] 2.50

Acosta et al. [1986] 2.79

Wedig [1982] 3.00

Butler et al. [1991] 5.8

Melvin and Patt [1991] 6

Wall [1991] 7 (Jouppi disagreed)
Kuck et al. [1972] 8

Riseman and Foster [1972] 51 (no control dependences)
Nicolau and Fisher [1984] 90 (Fisher’s optimism)

Superscalar Proposal

Go beyond single instruction pipeline, achieve
PC>1

Dispatch multiple instructions per cycle

Provide more generally applicable form of
concurrency (not just vectors)

Geared for sequential code that is hard to
parallelize otherwise

Exploit fine-grained or instruction-level
parallelism (ILP)

Classifying ILP Machines

[Jouppi, DECWRL 1991]
* Baseline scalar RISC
— Issue parallelism =1P =1
— Operation latency =0P =1

— Peak IPC=1
LIJ%) 1 | I V... 77 I
=0 IF DE EX WB
N 2
NoO 3
1= 4 |
UQ: 5 % |
O~ v 6
2 L L

< I I I | I I |

8

0 1 2 3 4 5 6 7 9
TIME IN CYCLES (OF BTA\SELINE MACHINE)

Classifying ILP Machines

[Jouppi, DECWRL 1991]

* Superpipelined: cycle time = 1/m of baseline
— Issue parallelism = IP = 1 inst / minor cycle
— Operation latency = OP = m minor cycles
— Peak IPC = m instr / major cycle (m x speedup?)

1y N |

2

DE EX WB
|
4

Classifying ILP Machines

[Jouppi, DECWRL 1991]
e Superscalar:
— Issue parallelism =P = ninst / cycle
— Operation latency = OP =1 cycle
— Peak IPC=ninstr / cycle (n x speedup?)

1
2
3

7

o 01 b

7

© 00~

7

1= DE EX

Classifying ILP Machines

[Jouppi, DECWRL 1991]
* VLIW: Very Long Instruction Word
— Issue parallelism =P = ninst / cycle

— Operation latency = OP =1 cycle
— Peak IPC=ninstr / cycle =1 VLIW / cycle

770077
/A
7
IF DE .. WB__:
4.
EX

Classifying ILP Machines

[Jouppi, DECWRL 1991]

e Superpipelined-Superscalar
— Issue parallelism = IP = n inst / minor cycle
— Operation latency = OP = m minor cycles
— Peak IPC = n x minstr / major cycle

//

1
2
3

g /: /: /’ y

o 01 b~

O 00 N

1= DE EX WB

Superscalar vs. Superpipelined

* Roughly equivalent performance
— If n = m then both have about the same IPC

— Parallelism exposed in space vs. time

e SUPERSCALAR
55551 Key:
| | fees]
[Fetch
——F=al 1 QUPERPIPELINED Deode
[I B I Execute
I [| [gk | | Writeback
| | fressiidd] |
1 IS |6 |7 |8 I9 11) IH I12 Ig

Time in Cycles (of Base Machine)

Superscalar Challenges

Branch
Predictor

Y

Instruction

; 'Flow
Instruction /

Buffer 4 4

DECODE

/" Integer

Floating-point Y

M edia

E‘

Memory

v

EXECUTE J

Data
Flow

Sy "Reorder

Reglster
Data
Flow

(ROB)

Store

Queue

Buffer I IIIITJITTIIIIIIITT] |

COMMIT \

