
ECE/CS 552: Input/Output

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Input/Output

• Motivation

• I/O Devices

• Buses

• Interfacing

• Examples

2

Motivation

• I/O necessary

– To/from users (display, keyboard, mouse)

– To/from non-volatile media (disk, tape)

– To/from other computers (networks)

• Key questions

– How fast?

– Getting faster?

3

Examples

4

Device I or O? Partner Data Rate
KB/s

Mouse I Human 0.01

Display O Human 373,000

Modem I/O Machine 2-8

LAN I/O Machine 100,000

Tape Storage Machine 2000

Disk Storage Machine 2000-
100,000

Humans are
asymmetric!

I/O Performance

• What is performance?

• Supercomputers read/write 1GB of data
– Want high bandwidth to vast data (bytes/sec)

• Transaction processing: many independent small I/Os

– Want high I/O rates (I/Os per sec)

– May want fast response times

• File systems

– Want fast response time first

– Lots of locality
5

Magnetic Disks

6

Stack of platters
Two surfaces per platter
Tracks
Heads move together
Sectors
Disk access

Queueing + seek
Rotation + transfer

Magnetic Disks

• Seek = 10-20ms but smaller with locality

• Rotation = ½ rotation/3600rpm = 8.3ms

• Transfer = x / 2-4MB/s

– E.g. 4kB/4MB/s = 1ms

• Remember: mechanical => ms

7

Disk Trends

• Disk trends
– $/MB down (well below $.10/GB)
– Disk diameter: 14” => 3.5” => 2.5” => 1.8” => 1”
– Seek time down
– Rotation speed increasing at high end

• 5400rpm => 7200rpm => 10Krpm => 15Krpm
• Slower when energy-constrained (laptop, Ipod)

– Transfer rates up
– Capacity per platter way up (100%/year)
– Hence, op/s/MB way down

• High op/s demand forces excess capacity

8

RAID

• What if we need 100 disks for storage?

• MTTF = 5 years / 100 = 18 days!

• RAID 0

– Data striped, but no error protection

• RAID 1

– Mirror = stored twice = 100% overhead

• RAID 5

– Block-wise parity = small overhead and small writes
• Need (n+1) disks for (n) capacity

– Know which disk failed => know which bit is wrong

9

GPU/Video Card

• Extreme bandwidth requirement just for frame buffer
– 1920x1080 pixels x 24bits/pixel = 6.2MB

– Refresh whole screen 60 times/sec = 373MB/s !

• 3D rendering amplifies bandwidth demand

– Texture memory access, etc.

• GPUs use specialized, dedicated memory (GDDRx)

– APUs share DDRx memory, can’t keep up

• Connected via PCIe x16 to system memory

10

Buses in a
Computer

System

11

Processor Memory

Backplane bus

a. I/O devices

Processor Memory

Processor-memory bus

b.

Bus

adapter

Bus

adapter

I/O

bus

I/O

bus

Bus

adapter

I/O

bus

Processor Memory

Processor-memory bus

c.

Bus

adapter

Backplane

bus

Bus

adapter

I/O bus

Bus

adapter

I/O bus

Buses

• Bunch of wires

– Arbitration

– Control

– Data

– Address

– Flexible, low cost

– Can be bandwidth bottleneck

12

Buses

• Types

– Processor-memory

• Short, fast, custom

– I/O

• Long, slow, standard

– Backplane

• Medium, medium, standard

13

Buses

• Synchronous – has clock

– Everyone watches clock and latches at appropriate phase

– Transactions take fixed or variable number of clocks

– Faster but clock limits length

– E.g. processor-memory

• Asynchronous – requires handshake

– More flexible

– I/O

14

Async. Handshake Example

(1) Request made & (2) request send

(3) Request deasserted & (4) ack deasserted

(5) Data sent & (6) Data rec’d & (7) ack deasserted

15

DataRdy

Ack

Data

ReadReq 1

3

4

5

7

6
42 2

Buses

• Synchronous vs. asynchronous

– Must distribute clock and deal with skew

– Simple handshake

– Backward compatibility difficult, esp. with slow devices

– No metastability problems (FSD)

16

Buses

• Improving bandwidth

– Wider bus

– Block transfer to exploit spatial locality

– Separate address/data lines

– Split transactions (multiple concurrent requests)

– Pipelined in-order responses

– Out-of-order responses

17

Bus Arbitration

• One or more bus masters, others slaves
– Bus request

– Bus grant

– Priority

– Fairness

• Implementations

– Centralized vs. distributed

18

Buses
• Bus standards: ISA, PCI, PCI-X, AGP, …

• Currently PCIe 2.x

– Serial, point-to-point topology

– Bidirectional differential lanes (4 wires each)

– 5GHz signaling rate per lane

– 8b/10b encoding for DC balance, clock recovery

– 5Gbit/sec x 10bit/byte = 500 MB/s per lane per
direction

– x1-x16 lanes per slot

• PCIe 3.0: 8GHz, 128/130b encoding
19

Interfacing

• Three key characteristics
– Multiple users/programs share I/O resource

– Overhead of managing I/O can be high

– Low-level details of I/O devices are complex

• Three key functions

– Virtualize resources – protection, scheduling

– Use interrupts (similar to exceptions)

– Device drivers

20

Interfacing

• How do you give I/O device a command?

– Memory-mapped load/store

• Special addresses not for memory

• Send commands as data

• Cacheable?

– I/O commands

• Special opcodes

• Send over I/O bus

21

Interfacing

• How do I/O devices communicate w/ CPU?

– Poll on devices

• Waste CPU cycles

• Poll only when device active?

– Interrupts

• Similar to exceptions, but asynchronous

• Info in cause register

• Possibly vectored interrupt handler

22

Interfacing

• Transfer data

– Polling and interrupts – by CPU

– OS transfers data

• Too many interrupts?

– Use DMA so interrupt only when done

– Use I/O channel – extra smart DMA engine

• Offload I/O functions from CPU

23

Direct Memory Access (DMA)

24

Proc

Cache

Proc

Cache

Memory

PCIe Bridge

GPU

SATA

DMA (cont’d)

• DMA

– CPU sets up

• Device ID, operation, memory address, # of bytes

– DMA

• Performs actual transfer (arb, buffers, etc.)

– Interrupt CPU when done

• Typical I/O devices that use DMA

– Hard drive, SSD, NIC, GPU

25

Interfacing

• Caches and I/O

– I/O in front of cache – slows CPU

– I/O behind cache – cache coherence?

– OS must invalidate/flush cache first before I/O

26

Interfacing Summary

27

I/O Device Communication

Control Flow Granularity

Mechanics of Control Flow

Outbound Control Flow

Mechanics of Data Flow

Programmed I/O

Direct Memory Access (DMA)

Software Cache Coherence
Hardware Cache Coherence

Inbound Control Flow

Programmed I/O
Memory-mapped Control Registers

Polling
Interrupt-driven

Fine-grained (shallow adapters)

Coarse-grained (deep adapters, e.g. channels)

Software Interfacing

• I/O access provided by OS

– Syscall interface between program and OS

– OS checks protections, runs device drivers

– Suspends current process, switches to other

– I/O interrupt fielded by O/S

– O/S completes I/O and makes process runnable

– After interrupt, run next ready process

• Multiprogramming

28

Multiprogramming

29

Single User:
CPU1 Disk Access CPU1 Think Time

CPU1

Disk Access

CPU1

Think Time

CPU2

Disk Access

CPU2

Think Time

Time-shared:

CPU3

Disk Access

CPU3

Think Time

I/O System Example

30

Summary – I/O

• I/O devices
– Human interface – keyboard, mouse, display

– Nonvolatile storage – hard drive, tape

– Communication – LAN, modem

• Buses
– Synchronous, asynchronous

– Custom vs. standard

• Interfacing
– Interrupts, DMA, cache coherence

– O/S: protection, virtualization, multiprogramming

31

