CS552 Spring 2008 Design Contest
Prof. Karu Sankaralingam

Problem statement
Design a load-store queue, which provides the followingfiomality:

e Detects ordering violations between load and store instnug in an out-of-order processor

e Forwards values between load and store instructions wiseiedsout of order

Logistics
e This contest contains 3 parts.

e Each part containts the same weight.

e | believe all 3 parts can be completed in the given time, bull aee.

Implement your verilog for each part in a separate directpgrtl, part2, and part3

At 12:13pm, handin 3 separate tar-balls of each directoteadadc-partl.tgz, dc-part2.tgz, and dc-
part3.tgz. Assignment name for handin is dc.

When you finish a problem, run the regress.sh script, malkethare are no failures, and raise your
hand.

Part 1

Description
Consider the abstract pipeline shown below:
Fetch ...... Execut e/ Addr essConput er +Menor yAccess. . .. .. Wit eback

Every load and store instruction goes through three phasgpasses through this pipeline. Every load
and store is fetched in program order, can execute outddraand is again written back in program order.
This is different from the type of processor organizatioattiiou have been designing where instructions
execute in program order. The job of the load-store queuedasure that when loads and stores are executed
out-of-order bad things don’t happen due to ordering vioted. Such a structure is required because the
data addresses accessed by the load and store instruatongt available until the execute stage.

Interface

The high-level module interface is below:



nmodul e | sq(/ * AUTOARG/

/1l Qutputs

exec_dataQut, exec LSQH t, exec PCQut, exec_addrQut,
exec_val idQut, exec_stall, flush_valid, flush_mask,
/1 1nputs

fetch_PC, fetch_itype, fetch valid, exec_PC, exec_addr,
exec_val ue, exec_valid, wo PC, wb valid, clk, rst

);
out put [15:0] exec_dataQut;
out put exec_LSQHI t;

out put [15:0] exec_PCQut;
out put [15:0] exec_addrQut;

out put exec_validQut;
out put exec_stall;
out put flush_valid;

output [31:0] flush_mask;

i nput [15:0] fetch_PC;
i nput fetch_itype;
i nput fetch_vali d;

nput [15:0] exec_PC,
nput [15:0] exec_addr;
nput [15:0] exec_val ue;
nput exec_vali d;

nput [15:0] wb_PC
nput wb_val i d;

nput clk;
nput rst;

endnodul e // |sq

Functionality

You must design a load-store queue which contains 32 entEash entry records the information for one
instruction in the program and keeps track of its progressuh the pipeline. Each entry contains the
following fields. See Figure 1.

e Status information:
1. valid - 1 bit
2. type -1 hit, (Id=0, st=1)
3. fetch - 1 bit, load or store has been fetched



| val i d| type| fetch| execute|addr(16 bits) | value(16 bits) | <--Entry O

o m o m o e o e e e e e e e e e e e e e e e e e e e e e e eeoo— - +
| | <--Entry 1
o m o m o e o e e e e e e e e e e e e e e e e e e e e e e eeoo— - +
| | <--Entry 2
o m o m o e o e e e e e e e e e e e e e e e e e e e e e e eeoo— - +
[.....
e . +
| valid|type| fetch| execute|addr (16 bits) | value(16 bits) | <--Entry 31
e . +

These are status These 2 fields

bits in DFF are in the CAM

Figure 1: LSQ high level organization

4. execute - 1 bit, load or store has been executed
e Actual data:
1. addr - 16 bits, address for a load or store instruction

2. value - 16 bits, value stored for a store instruction

You must create flip-flops using the provided dff.v to maintdie status bits. You will use the provided
basic building block of the CAM to store the address and vahtfiermation. See the CAM description
below.

CAM

A CAM provides the capability to store values like a RAM. Ithcalso be queried with a value and search
its entries to find if any entry matches the address providée.cam module’s interface is shown below:

nmodul e cam (/ * AUTOARG*/
/1l Qutputs
data out addr_match, data_out addr, data_out val ue,
[l lnputs
data _in_addr, data_in_value, index, cnd_add, cnd_renove,
cnd_mat ch, cnd_read, createdunp, clk, rst
)
output [31:0] data_out_addr_match; // which of 32 address natch
out put [15:0] data_out_ addr;
out put [15:0] data_out_val ue;

i nput [15:0] data_in_addr; /1 i nput data address
i nput [15:0] data_in_val ue; /1 input data val ue
i nput [4:0] i ndex; /[l index to wite to



Pr ogr am or der Execution order Wite-back order
(fetch order)

PC=0: cycle 1: St a cycle 10: st a cycle 14: st a
PC=1: cycle 2. St b cycle 11: st b cycle 15: st b
PC=2: cycle 4. St c cycle 12: Id a cycle 26: st c
PC=3:. cycle 6: |d a cycle 20: Id c cycle 27: |Id a
PC=4. cycle 8: Id c cycle 21: st c cycle 28: |Id c
PC=5. cycle 8: |Id a cycle 22: |Id a

Figure 2. Example sequence. This is pseudo-code. alhéd, c indicate the generated address for the
load and store instructions. Therefdrd a andst a access the same address.

i nput cnd_add; [l wite
i nput cnd_r enove; /'l renove
i nput cnd_nat ch; /1 match
i nput cnd_read; /'l read cam
i nput cr eat edunp;
i nput cl k;
i nput rst;
endnodul e

It can perform the following functions:

e cmdadd - add an (address, value) pair to the cam (you may passiknvalues for loads. Note
the CAM itself doesn't distinguish between loads and stoyes must maintain type information in
separate status bits). The pair is added at the locationgubto by index.

e cmd.remove - remove the (address, value) pair at location poitttdy index.
e cmd.match - find all entries that match the provided address évalignored).

e cmdread - read the (address, value) pair at location pointeg todex.

For the first part of this problem, we will assume PC'’s arerigtstd to values between 0 and 31 and all
programs are no longer than 31 instructions and use up PQ®gth 31 only. For this problem we will
assume programs have only load and store instructions! Wesgume 8-bit instructions, and hence you
can simply use the lower order bits to index the storage &tras inside your LSQ. For the second part we
will make this interesting by asking you to design for 128&instions, but instantiating four copies of the
CAM. Desiging for any number of instructions and buildinguystorage structures as a circular buffer, is
more interesting and is left as exercise at home :-)

The functionality you must provide is as follows. Since rastions can execute out-of order, the follow-
ing cases arise.

1. Fetch: When every instruction (load or store) is fetched, indidalby fetchPC and by fetchvalid
being set, allocate an entry in the corresponding LSQ entwalid.



2. Execute (Load): For every load, when it “executes” i.e. exealid is set, look for all prior stores
earlier in program order that have executed and see if anjeftdress of those stores match the
address of this load. Use the cmthtch functionality of the CAM. There may be multiple matshe
determinghe last store that matches the address of this load and the outplé &fSQ for that cycle
must be the value of the matching store, and set &8QHit=1. Use the cmdead command. If
none of the prior addresses match, ek&QHit = 0.

Consider the example sequence in Figure 2. In cycle 12, thexdoad-hit and the dataOut must be
the value read from PC=0. Cycle 22 however, is NOT a load hitibse, in cycle 14, the store has
been written back and hence deallocated from the LSQ. Sée back bullet below. Cycle 20 is NOT
a load hit because, the store has not yet reached the extagte s

3. Execute (Store):For every store that “executes”, find the store’s addredsmizches the address of
a load that has already executed. Use the_cmadch command. This can occur, because a load that is
later in the program can execute before a store. In this &iaskthe first load that matches the address
of this store and generate a flush mask which has 1 for alluastns that have been fetched after
(and including) the load. Also set, exeSQHit which is what the testbench uses for checking.

Considering again the example in Figure 2. In cycleXl, ¢ executes, which is ahead bfl ¢ in
program order, and hence will trigger a flush for instructianith PC>= 3. The flushmask must be
set appropriately.

4. Writeback: When a load or store reaches, writeback de-allocate it flmgriiSQ and mark its entry
as invalid.

Remember, in a single cycle all three events (fetch, exeanig writeback) can occur. But never for the
same instruction in the same cycle. This behavior is suneediin the table below.

In addition, looking ahead to the interface for Part 3, tHerfiace of the LSQ is designed such that, its
the outputs the address, and PC that were provided as irgitits t

fetch.valid | Load/Store| Set valid bit in LSQ, set type, and set fetch=1
execvalid Load Search LSQ, if hit, exedataOut = data from last matching stgre
and exed_SQHit=1. Set execute=1.
Load Search LSQ, if miss, exelcSQHit = 0, dataOut= dont care. Set
execute=1.
execvalid Store Find if any later store matches, and if so flush that load ahd al
instructions that succeed it, by setting flustask
whb_valid | Load/Store| Set valid bit to O for that instruction

Table 1: LSQ behavior. In addition whenever, exetid is set, the LSQ must set exgalidOut,
execPCOut, exeaddrOut which are simply copies of exealid, execPC, and exe@addr.

Other notes
e For part 1 execstall is always 0.

e You are provided with the following modules:

— cam.v - A content addressable memory or CAM, which can beczseely searched to find a
value. See details below.



— encoder32x5.v - 32 to 5 encoder
— decoder5x32.v - 5 to 32 decoder

e This part is purely combinational logic in terms of what yceed to design

Files

Files needed for this design are located in:
/u/k/alkaru/courses/cs552/spring2008/handouts/dg/2efilog/release

Testbench

You are provided a random testbench_tsapd bench.v which you can use for testing. This testbench will be
used for final pass/fail. To generate different random sege® use the -seed flag to pass in different seed.
For example:

wsrun. pl -seed 73 |Isq_rand _bench *.v
wsrun. pl -seed 81 | sq_rand_bench x.v
wsrun. pl -seed 90 I sq rand _bench *.v

This testbench checks every load and store when it is “egdtlt it gets the right value (for stores
forwarded from the LSQ as exatataOut) and if the LSQ correctly determines LSQ hits. Ihsricycle-by-
cycle when different events occur, and a print a line callERACE.” when an instruction executes.

You may also develop your own targeted testbenches forfapp@ces.

A regression script (regress.sh) is also provided whichnawit your desing with hundred random seeds.

The testbench generates random fetch, execute, and vaktelants with random addresses and values.
You can control the number of unique addresses it uses bygaithe “define NUNIQ_ADDRESSES” in
common.v (or commari28.v for next part). The fewer unique addresses, more svaid conflicts.

In addition to the random seed, this number of unique addssissanother parameter you can use to test
different corner cases.

Disclaimer: There may be bugs in testbench which you must delg!



Part 2

Now we will extend the problem to a more general case. Usedopies of the CAM and replicate other
storage structures to support 128 instructions. Use thedsdbench128.v testbench and commdr8.v
in the part2 directory.

Use a separate directory for this part.

Part 3

Take your problem from part 1 and build a 2-state pipeline@UBodule. Fetch and writeback requests are
still serviced in the same cycle that they arrive just likgpart 1. However, execute requests can take one or
two cycles depending on whether they cause a LSQ hit. Rieal-8Q and CAMs resemble this case more
because it is easier to build a CAM that must support only aramhly match in one cycle.

e If an instructions results in a LSQ miss i.e. no other indinms match that same address, then this
can be detected in a single cycle from the camatch operation and LSQHit=0 is returned in the cycle
in which the request was provided, just like in part 1.

e However, on a LSQHit, the data that needs to be returned feacgdequires a second CAM operation
of reading the CAM. This operation is performed in the nextleyduring which the processor must
be stalled. The LSQ should assert the egtdl signal and return data and LSQHit the next cycle.
Also remember that exeBCOut, exe@addrOut, exewalidOut will also be delayed by one cycle.

e On a LSQHit for a store, the flush mask is calculated in thewalhg cycle, and exestall is asserted
for one cycle like in the above case, and LSQHit is returedhéngecond cycle.

Use camsync.v for this part. You can use the same testbenchiasd bench.v



