
CS552 Spring 2008 Design Contest
Prof. Karu Sankaralingam

Problem statement

Design a load-store queue, which provides the following functionality:

• Detects ordering violations between load and store instructions in an out-of-order processor

• Forwards values between load and store instructions when issued out of order

Logistics

• This contest contains 3 parts.

• Each part containts the same weight.

• I believe all 3 parts can be completed in the given time, but we’ll see.

• Implement your verilog for each part in a separate directory: part1, part2, and part3

• At 12:13pm, handin 3 separate tar-balls of each directory called: dc-part1.tgz, dc-part2.tgz, and dc-
part3.tgz. Assignment name for handin is dc.

• When you finish a problem, run the regress.sh script, make sure there are no failures, and raise your
hand.

Part 1

Description

Consider the abstract pipeline shown below:

Fetch Execute/AddressComputer+MemoryAccess...... Writeback

Every load and store instruction goes through three phases as it passes through this pipeline. Every load
and store is fetched in program order, can execute out-of-order and is again written back in program order.
This is different from the type of processor organization that you have been designing where instructions
execute in program order. The job of the load-store queue is to ensure that when loads and stores are executed
out-of-order bad things don’t happen due to ordering violations. Such a structure is required because the
data addresses accessed by the load and store instructions are not available until the execute stage.

Interface

The high-level module interface is below:

1

module lsq(/*AUTOARG*/
// Outputs
exec_dataOut, exec_LSQHit, exec_PCOut, exec_addrOut,
exec_validOut, exec_stall, flush_valid, flush_mask,
// Inputs
fetch_PC, fetch_itype, fetch_valid, exec_PC, exec_addr,
exec_value, exec_valid, wb_PC, wb_valid, clk, rst
);

output [15:0] exec_dataOut;
output exec_LSQHit;
output [15:0] exec_PCOut;
output [15:0] exec_addrOut;
output exec_validOut;

output exec_stall;
output flush_valid;
output [31:0] flush_mask;

input [15:0] fetch_PC;
input fetch_itype;
input fetch_valid;

input [15:0] exec_PC;
input [15:0] exec_addr;
input [15:0] exec_value;
input exec_valid;

input [15:0] wb_PC;
input wb_valid;

input clk;
input rst;

endmodule // lsq

Functionality

You must design a load-store queue which contains 32 entries. Each entry records the information for one
instruction in the program and keeps track of its progress through the pipeline. Each entry contains the
following fields. See Figure 1.

• Status information:

1. valid - 1 bit

2. type - 1 bit, (ld = 0, st = 1)

3. fetch - 1 bit, load or store has been fetched

2

+--+
|valid|type|fetch|execute|addr(16 bits) | value(16 bits) | <--Entry 0
+--+
| | <--Entry 1
+--+
| | <--Entry 2
+--+
|.....
+--+
|valid|type|fetch|execute|addr(16 bits) | value(16 bits) | <--Entry 31
+--+

These are status These 2 fields
bits in DFF are in the CAM

Figure 1: LSQ high level organization

4. execute - 1 bit, load or store has been executed

• Actual data:

1. addr - 16 bits, address for a load or store instruction

2. value - 16 bits, value stored for a store instruction

You must create flip-flops using the provided dff.v to maintain the status bits. You will use the provided
basic building block of the CAM to store the address and valueinformation. See the CAM description
below.

CAM

A CAM provides the capability to store values like a RAM. It can also be queried with a value and search
its entries to find if any entry matches the address provided.The cam module’s interface is shown below:

module cam (/*AUTOARG*/
// Outputs
data_out_addr_match, data_out_addr, data_out_value,
// Inputs
data_in_addr, data_in_value, index, cmd_add, cmd_remove,
cmd_match, cmd_read, createdump, clk, rst
);
output [31:0] data_out_addr_match; // which of 32 address match
output [15:0] data_out_addr;
output [15:0] data_out_value;
input [15:0] data_in_addr; // input data address
input [15:0] data_in_value; // input data value
input [4:0] index; // index to write to

3

Program order Execution order Write-back order
(fetch order)

PC=0: cycle 1: St a cycle 10: st a cycle 14: st a
PC=1: cycle 2: St b cycle 11: st b cycle 15: st b
PC=2: cycle 4: St c cycle 12: ld a cycle 26: st c
PC=3: cycle 6: ld a cycle 20: ld c cycle 27: ld a
PC=4: cycle 8: ld c cycle 21: st c cycle 28: ld c
PC=5: cycle 8: ld a cycle 22: ld a

Figure 2: Example sequence. This is pseudo-code. Thea, b, c indicate the generated address for the
load and store instructions. Thereforeld a andst a access the same address.

input cmd_add; // write
input cmd_remove; // remove
input cmd_match; // match
input cmd_read; // read cam
input createdump;
input clk;
input rst;

endmodule

It can perform the following functions:

• cmd add - add an (address, value) pair to the cam (you may pass in junk values for loads. Note
the CAM itself doesn’t distinguish between loads and stores, you must maintain type information in
separate status bits). The pair is added at the location pointed to by index.

• cmd remove - remove the (address, value) pair at location pointed to by index.

• cmd match - find all entries that match the provided address (value is ignored).

• cmd read - read the (address, value) pair at location pointed to by index.

For the first part of this problem, we will assume PC’s are restricted to values between 0 and 31 and all
programs are no longer than 31 instructions and use up PCs 0 through 31 only. For this problem we will
assume programs have only load and store instructions! We will assume 8-bit instructions, and hence you
can simply use the lower order bits to index the storage structures inside your LSQ. For the second part we
will make this interesting by asking you to design for 128 instructions, but instantiating four copies of the
CAM. Desiging for any number of instructions and building your storage structures as a circular buffer, is
more interesting and is left as exercise at home :-)

The functionality you must provide is as follows. Since instructions can execute out-of order, the follow-
ing cases arise.

1. Fetch: When every instruction (load or store) is fetched, indicated by fetchPC and by fetchvalid
being set, allocate an entry in the corresponding LSQ entry to valid.

4

2. Execute (Load): For every load, when it “executes” i.e. execvalid is set, look for all prior stores
earlier in program order that have executed and see if any of the address of those stores match the
address of this load. Use the cmdmatch functionality of the CAM. There may be multiple matches,
determinethe last store that matches the address of this load and the output of the LSQ for that cycle
must be the value of the matching store, and set execLSQHit=1. Use the cmdread command. If
none of the prior addresses match, execLSQHit = 0.

Consider the example sequence in Figure 2. In cycle 12, thereis a load-hit and the dataOut must be
the value read from PC=0. Cycle 22 however, is NOT a load hit because, in cycle 14, the store has
been written back and hence deallocated from the LSQ. See write back bullet below. Cycle 20 is NOT
a load hit because, the store has not yet reached the execute stage.

3. Execute (Store):For every store that “executes”, find the store’s address that matches the address of
a load that has already executed. Use the cmdmatch command. This can occur, because a load that is
later in the program can execute before a store. In this case,find the first load that matches the address
of this store and generate a flush mask which has 1 for all instructions that have been fetched after
(and including) the load. Also set, execLSQHit which is what the testbench uses for checking.

Considering again the example in Figure 2. In cycle 21,st c executes, which is ahead ofld c in
program order, and hence will trigger a flush for instructions with PC>= 3. The flushmask must be
set appropriately.

4. Writeback: When a load or store reaches, writeback de-allocate it from the LSQ and mark its entry
as invalid.

Remember, in a single cycle all three events (fetch, execute, and writeback) can occur. But never for the
same instruction in the same cycle. This behavior is summarized in the table below.

In addition, looking ahead to the interface for Part 3, the interface of the LSQ is designed such that, its
the outputs the address, and PC that were provided as inputs to it.

fetch valid Load/Store Set valid bit in LSQ, set type, and set fetch=1
execvalid Load Search LSQ, if hit, execdataOut = data from last matching store

and execLSQHit=1. Set execute=1.
Load Search LSQ, if miss, execLSQHit = 0, dataOut= dont care. Set

execute=1.
execvalid Store Find if any later store matches, and if so flush that load and all

instructions that succeed it, by setting flushmask
wb valid Load/Store Set valid bit to 0 for that instruction

Table 1: LSQ behavior. In addition whenever, execvalid is set, the LSQ must set execvalidOut,
execPCOut, execaddrOut which are simply copies of execvalid, execPC, and execaddr.

Other notes

• For part 1 execstall is always 0.

• You are provided with the following modules:

– cam.v - A content addressable memory or CAM, which can be associatively searched to find a
value. See details below.

5

– encoder32x5.v - 32 to 5 encoder

– decoder5x32.v - 5 to 32 decoder

• This part is purely combinational logic in terms of what you need to design

Files

Files needed for this design are located in:
/u/k/a/karu/courses/cs552/spring2008/handouts/dc2008/verilog/release

Testbench

You are provided a random testbench lsqrand bench.v which you can use for testing. This testbench will be
used for final pass/fail. To generate different random sequences, use the -seed flag to pass in different seed.
For example:

wsrun.pl -seed 73 lsq_rand_bench *.v
wsrun.pl -seed 81 lsq_rand_bench *.v
wsrun.pl -seed 90 lsq_rand_bench *.v

This testbench checks every load and store when it is “executed” if it gets the right value (for stores
forwarded from the LSQ as execdataOut) and if the LSQ correctly determines LSQ hits. It prints cycle-by-
cycle when different events occur, and a print a line called “TRACE:” when an instruction executes.

You may also develop your own targeted testbenches for specific pieces.
A regression script (regress.sh) is also provided which will run your desing with hundred random seeds.
The testbench generates random fetch, execute, and writeback events with random addresses and values.

You can control the number of unique addresses it uses by changing the “define NUNIQ ADDRESSES” in
common.v (or common128.v for next part). The fewer unique addresses, more load-store conflicts.

In addition to the random seed, this number of unique addresses is another parameter you can use to test
different corner cases.

Disclaimer: There may be bugs in testbench which you must debug!

6

Part 2

Now we will extend the problem to a more general case. Use fourcopies of the CAM and replicate other
storage structures to support 128 instructions. Use the lsqrand bench128.v testbench and common128.v
in the part2 directory.

Use a separate directory for this part.

Part 3

Take your problem from part 1 and build a 2-state pipelined LSQ module. Fetch and writeback requests are
still serviced in the same cycle that they arrive just like inpart 1. However, execute requests can take one or
two cycles depending on whether they cause a LSQ hit. Real-life LSQ and CAMs resemble this case more
because it is easier to build a CAM that must support only reador only match in one cycle.

• If an instructions results in a LSQ miss i.e. no other instructions match that same address, then this
can be detected in a single cycle from the cammatch operation and LSQHit=0 is returned in the cycle
in which the request was provided, just like in part 1.

• However, on a LSQHit, the data that needs to be returned for a load requires a second CAM operation
of reading the CAM. This operation is performed in the next cycle, during which the processor must
be stalled. The LSQ should assert the execstall signal and return data and LSQHit the next cycle.
Also remember that execPCOut, execaddrOut, execvalidOut will also be delayed by one cycle.

• On a LSQHit for a store, the flush mask is calculated in the following cycle, and execstall is asserted
for one cycle like in the above case, and LSQHit is retured in the second cycle.

Use camsync.v for this part. You can use the same testbench, lsqrand bench.v

7

