
HW2 Solutions (CS552 Spring 2013)
Grade distribution: (Total: 100)
- Verilog submission of problems 1) and 2) carry 25 points each(Total: 50 points)
- Written part of problem 1) and 2) carry 5 points (Total: 10 points)
- Written part of problems 3) through 14) (only four are graded) carry 10 points
each (Total: 40 points)

Grading of verilog submission:
Total points for each problem :25
- Points for compiling design : 5
- Points for functional tests: 20 (1 point deducted for each failure out
of 50 random tests)
- Penalty for incorrect directory structure: -5
- Penalty for missing files: (50% of points scored for the problem)
- Penalty for vcheck failures: (50% of points scored for the problem)

Grading of written part:
-written part of problems 1) and 2) – 5 points each
-Problems 3), 5), 8) and 9) – 10 points each

Problem 1 and 2
Solutions not to be provided

Problem 3 (1.3.1 – 1.3.3)
1.3.1 a) perf of P1 = 3G/1.5 =2 X 109 instructions per cycle

perf of P2 = 2.5G/1 = 2.5 X 109 instructions per cycle
perf of P3 = 4G/2.2 = 1.82 X 109 instructions per cycle

P2 is best.
b) perf of P1 = 2G/1.2 =1.67 X 109 instructions per cycle

perf of P2 = 3G/0.8 = 3.75 X 109 instructions per cycle
perf of P3 = 4G/2 = 2 X 109 instructions per cycle

P2 is best.
1.3.2 a) cycles for P1 = 3G X 10 = 3 X 1010 cycles

instructions for P1 = 3G X 10 /1.5 = 2 X 1010 instructions
cycles for P2 = 2.5G X 10 = 2.5 X 1010 cycles
instructions for P2 = 2.5G X 10 /1 = 2.5 X 1010 instructions
cycles for P3 = 4G X 10 = 4 X 1010 cycles
instructions for P3 = 4G X 10 /2.2 = 1.82 X 1010 instructions

b) cycles for P1 = 2G X 10 = 2 X 1010 cycles
instructions for P1 = 2G X 10 /1.2 = 1.67 X 1010 instructions
cycles for P2 = 3G X 10 = 3 X 1010 cycles
instructions for P2 = 3G X 10 /0.8 = 3.75 X 1010 instructions
cycles for P3 = 4G X 10 = 4 X 1010 cycles
instructions for P3 = 4G X 10 /2 = 2 X 1010 instructions

1.3.3 new time = 10 X 0.7 = 7s
a) CPInew = CPIold × 1.2, then CPI(P1) = 1.8, CPI(P2) = 1.2, CPI(P3) = 2.6

f = No. Instr × CPI/time, then
f(P1) = 20 × 109 × 1.8 / 7 = 5.14 GHz
f(P2) = 25 × 109 × 1.2 / 7 = 4.28 GHz
f(P1) = 18.18 × 109 × 2.6 / 7 = 6.75 GHz

b) CPInew = CPIold × 1.2, then CPI(P1) = 1.44, CPI(P2) = 0.96, CPI(P3) = 2.4

f = No. Instr × CPI/time, then
f(P1) = 16.66 × 109 × 1.44/7 = 3.42 GHz
f(P2) = 37.5 × 109 × 0.96/7 = 5.14 GHz
f(P1) = 20 × 109 × 2.4/7 = 6.85 GHz

Problem 4 (1.4.1 – 1.4.3)
1.4.1

Class A: 105 instr.
Class B: 2 × 105 instr.
Class C: 5 × 105 instr.
Class D: 2 × 105 instr.
Time = No. instr × CPI/clock rate
a)Total time P1 = (105 + 2 × 105 × 2 + 5 × 105 × 3 + 2 × 105 × 3)/(2.5 × 109) = 10.4 × 10−4 s

 b)Total time P2 = (105 × 2 + 2 × 105 × 2 + 5 × 105 × 2 + 2 × 105 × 2)/(3 × 109) = 6.66 × 10−4 s
1.4.2 CPI = time × clock rate/No. instr

a) CPI (P1) = 10.4 × 10−4 × 2.5 × 109/106 = 2.6
 CPI (P2) = 6.66 × 10−4 × 3 × 109/106 = 2.0

b) CPI (P1) = 6.8 × 10−4 × 2.5 × 109/106 = 1.7
CPI (P2) = 4 × 10−4 × 3 × 109/106 = 1.2

1.4.3
a) clock cycles (P1) = 105 × 1 + 2 × 105 × 2 + 5 × 105 × 3 + 2 × 105 × 3 = 26 × 105

clock cycles (P2) = 105 × 2 + 2 × 105 × 2 + 5 × 105 × 2 + 2 × 105 × 2 = 20 × 105
b) clock cycles (P1) = 17 × 105

clock cycles (P2) = 12 × 105

Problem 5 (1.4.4 – 1.4.6)
1.4.4 a) (650 × 1 + 100 × 5 + 600 × 5 + 50 × 2) / (2 X 109) = 2,125 ns

b) (750 × 1 + 250 × 5 + 500 × 5 + 500 × 2) / (2 × 109) = 2,750 ns
1.4.5 CPI = time × clock rate/No. instr

a) CPI = 2,125 × 10–9 × 2 × 109/1,400 = 3.03
b) CPI = 2,750 × 10–9 × 2 × 109/2,000 = 2.75

1.4.6 a) Time = (650 × 1 + 100 × 5 + 300 × 5 + 50 × 2) / (2 X 109) = 1,375 ns
Speedup = 2,125 ns/1,375 ns = 1.54
CPI = 1,375 × 10–9 × 2 × 109/1,100 = 2.5

b) Time = (750 × 1 + 250 × 5 + 250 × 5 + 500 × 2) / (2 X 109) = 2,125 ns
Speedup = 2,750 ns/2,125 ns = 1.29
CPI = 2,125 × 10–9 × 2 × 109/1,750 = 2.43

Problem 6 (1.6.1 – 1.6.3)
1.6.1 CPI = Texec × f/No. Instr

a) CPI for compiler A = 1.8 X 109 / 109 = 1.8
CP for compiler B = 1.8 X 109 / (1.2 X 109) = 1.5

b) CPI for compiler A = 1.1 X 109 / 109 = 1.1
CP for compiler B = 1.5 X 109 / (1.2 X 109) = 1.25

1.6.2 fA/fB = (No. Instr(A) X CPI(A))/(No. Instr(B) X CPI(B))
a) fA/fB = (1 X 109 X 1.8)/ (1.2 X 109 X 1.5) = 1.00
b) fA/fB = (1 X 109 X 1.1)/ (1.2 X 109 X 1.25) = 0.73

1.6.3 Tnew/ Told = (Icount(new) X CPI(new)) / (Icount(old) X CPI(old))
a) Tnew/ TA = (0.6 X 109 X 1.1) / (1 X 109 X 1.8) = 0.37
 Tnew/ TB = (0.6 X 109 X 1.1) / (1.2 X 109 X 1.5) = 0.37

a) Tnew/ TA = (0.6 X 109 X 1.1) / (1 X 109 X 1.1) = 0.6
 Tnew/ TB = (0.6 X 109 X 1.1) / (1.2 X 109 X 1.25) = 0.44

Problem 7 (Only part A of 1.10.1 – 1.10.3)
1.10.1 For 1 processor system, instruction per processor = 4096, Total instructions = 4096

For 1 processor system, instruction per processor = 2046 Total instructions = 4096
For 1 processor system, instruction per processor = 1028, Total instructions = 4096
For 1 processor system, instruction per processor = 512, Total instructions = 4096

1.10.2 T = [(Icount (Arith) X CPI (Arith)) + (Icount (ldst) X CPI (ldst)) + (Icount (branch) X CPI (branch))]/f
For 1 processor, T = (2560 X 1 + 1280 X 4 + 256 X 2)/ 2 X 109 = 4.096 microseconds
For 2 processor, T = (1280 X 1 + 640 X 5 + 128 X 2)/ 2 X 109 = 2.368 microseconds
For 4 processor, T = (640 X 1 + 320 X 7 + 64 X 2)/ 2 X 109 = 1.504 microseconds
For 8 processor, T = (320 X 1 + 160 X 12 + 32 X 2)/ 2 X 109 = 1.152 microseconds

1.10.3 For 1 processor, T = (2560 X 2 + 1280 X 4 + 256 X 2)/ 2 X 109 = 5.376 microseconds
For 2 processor, T = (1280 X 2 + 640 X 5 + 128 X 2)/ 2 X 109 = 3.008 microseconds
For 4 processor, T = (640 X 2 + 320 X 7 + 64 X 2)/ 2 X 109 = 1.824 microseconds
For 8 processor, T = (320 X 2 + 160 X 12 + 32 X 2)/ 2 X 109 = 1.312 microseconds

Problem 8 (2.10.1 – 2.10.3)
2.10.1 a) add $s0, $s0, $s0

b) sub $t1, $t2, $t3
2.10.2 a) R type

b) R type
2.10.3 a) 0x02108020

b) 0x014B4822
Problem 9
sub $t1, $t2, $t3
add $t4, $t1, $t3
sub $t2, $t1, $4
Problem 10 (2.13.1 – 2.13.3)(Use modified instructions for 2.13.1)
2.13.1 a) 0xBABEFEF8

b) 0x11DD11D1
2.13.2 a) 0xAAAAAAA0

b) 0x00DD00D0
2.13.3 a) 0x00005545

b) 0x0000BA01
Problem 11(Only part B of 2.14.1 – 2.14.3)
2.14.1 lui $t1, 0x003f

ori $t1, $t1, 0xffe0
and $t1, $t0, $t1
sll $t1, $t1, 9

2.14.2 andi $t0, $t0, 0x000f
sll $t0, $t0, 14
ori $t1, $t1, 0x3fff
sll $t1, $t1, 18
ori $t1, $t1, 0x3fff
or $t1, $t1, $t0

2.14.3 srl $t0, $t0, 28
andi $t0, $t0, 0x0007
sll $t0, $t0, 14
ori $t1, $t1, 0x7fff

sll $t1, $t1, 17
ori $t1, $t1, 0x3fff
or $t1, $t1, $t0

Problem 12
add $t2, $zero, 10 # i=10
loopstart: beq $t2, $zero, loopdone # Jump to end of loop if i == 0
sll $t3, $t2, 4 # $t3 = 16 * i
add $t3, $a0, $t3 # $t3 = address of a[4 * i]
sll $t4, $t2, 3 # $t4 = 8 * i
add $t4, $a1, $t4 # $t4 = address of b[2 * i]
lw $t4, 0($t4) # $t4 = b[2 * i]
add $t4, $t4, $t2 # $t4 = b[2 * i] + i
sw $t4, 0($t3) # a[4 * i] = $t4
sub $t2, $t2, 1 # i--
j loopstart # Jump to beginning of loop
loopdone: ...

Problem 13 (2.39.1 – 2.39.3)
2.39.1 T = [(CPI(arith) X Icount(arith)) + (CPI(ldst) X Icount(ldst)) + (CPI(branch) X Icount(branch))] / f

a) T = (1 X 500M + 10 X 300M + 3 X 100M) / 5G = 0.76s
b) T = (4 X 500M + 40 X 300M + 3 X 100M) / 5G = 2.86s

2.39.2 a) Tnew = (1 X 375M + 10 X 300M + 3 X 100M) / (5G/1.1) = 0.81s
ie., the extra clock cycle time adds sufficiently to the new CPU time such that it is not
quicker than the old execution time.

b) Tnew = (4 X 375M + 40 X 300M + 3 X 100M) / (5G/1.1) = 3.04s
ie., the extra clock cycle time adds sufficiently to the new CPU time such that it is not
quicker than the old execution time.
2.39.3 a) CPIold = (1 X 500M +10 X 300M + 3 X 100M) / 900M = 4.22

 CPInew (for doubling arith perf) = (0.5 X 500M +10 X 300M + 3 X 100M) / 900M = 3.94
Speedup(for doubling arith perf) = 4.22/3.94 = 107%

 CPInew (for 10x arith perf) = (0.1 X 500M +10 X 300M + 3 X 100M) / 900M = 3.72
Speedup(for 10x arith perf) = 4.22/3.72 = 113%

b) CPIold = (4 X 500M +40 X 300M + 3 X 100M) / 900M = 15.89
 CPInew (for doubling arith perf) = (2 X 500M +40 X 300M + 3 X 100M) / 900M = 14.78

Speedup(for doubling arith perf) = 15.89/14.78 = 107%
 CPInew (for 10x arith perf) = (0.4 X 500M +40 X 300M + 3 X 100M) / 900M = 13.89

Speedup(for 10x arith perf) = 15.89/13.89 = 114%

Problem 14
objdump is a program for displaying various information about object
files. For instance, it can be used as a disassembler to view
executable in assembly form. It is part of the GNU binutils for
fine-grained control over executable and other binary data.

400474 push %rbp
400475 mov %rsp,%rbp //Setting up stack registers
400478 movl $0x0,-0x4(%rbp) //Initialise sum, -0x4(%rbp)

40047f movl $0x0,-0x8(%rbp) //Initialize i
400486 jmp 400492 <main+0x1e> //check the loop condition before first iteration
400488 mov -0x8(%rbp),%eax //load value of i into register %eax
40048b add %eax, -0x4(%rbp) //add i to sum
40048e addl $0x1,-0x8(%rbp) //increment i
400492 cmpl $0x17, -0x8(%rbp) //compare i to 23 (ie, 0x17)
400496 jle 400488 <main+0x14> //if i<=23, go to beginning of loop
400498 mov -0x4(%rbp), %eax //Keep value of sum in %eax before returning
40049b leaveq
40049c retq
40049d nop
40049e nop
40049f nop

With -O3:
mov $0x114, %eax
retq

The compiler optimizes the loop and determines the sum without executing the loop. Note that 0x114
or 276 in decimal is the sum of integers from 0 to 23!

The other instructions set up context to start the program and are
part of standard libraries to load a program.

