HW2 Solutions (CS552 Spring 2013)

Grade distribution: (Total: 100)

- Verilog submission of problems 1) and 2) carry 25 points each(Total: 50 points)
- Written part of problem 1) and 2) carry 5 points (Total: 10 points)
- Written part of problems 3) through 14) (only four are graded) carry 10 points each (Total: 40 points)

Grading of verilog submission:

Total points for each problem :25

- Points for compiling design : 5
- Points for functional tests: 20 (1 point deducted for each failure out of 50 random tests)
- Penalty for incorrect directory structure: -5
- Penalty for missing files: (50\% of points scored for the problem)
- Penalty for vcheck failures: (50\% of points scored for the problem)

Grading of written part:
-written part of problems 1) and 2) - 5 points each
-Problems 3), 5), 8) and 9) - 10 points each

Problem 1 and 2

Solutions not to be provided

Problem 3 (1.3.1-1.3.3)

1.3.1 a) perf of $\mathrm{P} 1=3 \mathrm{G} / 1.5=2 \times 10^{9}$ instructions per cycle perf of P2 $=2.5 \mathrm{G} / 1=2.5 \mathrm{X} \mathrm{10}{ }^{9}$ instructions per cycle perf of P3 $=4 \mathrm{G} / 2.2=1.82 \times 10^{9}$ instructions per cycle P 2 is best.
b) perf of $\mathrm{P} 1=2 \mathrm{G} / 1.2=1.67 \times 10^{9}$ instructions per cycle perf of P2 $=3 \mathrm{G} / 0.8=3.75 \mathrm{X} 10^{9}$ instructions per cycle perf of P3 $=4 \mathrm{G} / 2=2 \times 10^{9}$ instructions per cycle

P 2 is best.
1.3.2 a) cycles for P1 $=3 \mathrm{G} \times 10=3 \times 10^{10}$ cycles instructions for $\mathrm{P} 1=3 \mathrm{GX} 10 / 1.5=2 \times 10^{10}$ instructions cycles for P2 $=2.5 \mathrm{GX} \mathrm{10}=2.5 \mathrm{X} \mathrm{10} 0^{10}$ cycles instructions for $\mathrm{P} 2=2.5 \mathrm{G}$ X $10 / 1=2.5 \times 10^{10}$ instructions cycles for P3 $=4 \mathrm{GX} \mathrm{X} 10=4 \times 10^{10}$ cycles instructions for $\mathrm{P} 3=4 \mathrm{GX} 10 / 2.2=1.82 \times 10^{10}$ instructions
b) cycles for P1 $=2 \mathrm{GX} \mathrm{10}=2 \mathrm{X} 10^{10}$ cycles instructions for P1 = 2G X $10 / 1.2=1.67 \times 10^{10}$ instructions cycles for P2 $=3 \mathrm{G} \mathrm{X} 10=3 \times 10^{10}$ cycles instructions for P2 = 3G X $10 / 0.8=3.75 \times 10^{10}$ instructions cycles for P3 $=4 \mathrm{G}$ X $10=4 \times 10^{10}$ cycles instructions for P3 $=4 \mathrm{G} \mathrm{X} 10 / 2=2 \times 10^{10}$ instructions
1.3.3 new time $=10 \times 0.7=7 \mathrm{~s}$
a) $\quad \mathrm{CPInew}=\mathrm{CPIold} \times 1.2$, then $\mathrm{CPI}(\mathrm{P} 1)=1.8, \mathrm{CPI}(\mathrm{P} 2)=1.2, \mathrm{CPI}(\mathrm{P} 3)=2.6$
$\mathrm{f}=$ No. Instr \times CPI/time, then
$\mathrm{f}(\mathrm{P} 1)=20 \times 10^{9} \times 1.8 / 7=5.14 \mathrm{GHz}$
$\mathrm{f}(\mathrm{P} 2)=25 \times 10^{9} \times 1.2 / 7=4.28 \mathrm{GHz}$
$\mathrm{f}(\mathrm{P} 1)=18.18 \times 10^{9} \times 2.6 / 7=6.75 \mathrm{GHz}$
b) \quad CPInew $=\mathrm{CPIold} \times 1.2$, then $\mathrm{CPI}(\mathrm{P} 1)=1.44, \mathrm{CPI}(\mathrm{P} 2)=0.96, \mathrm{CPI}(\mathrm{P} 3)=2.4$
$\mathrm{f}=$ No. Instr \times CPI/time, then
$\mathrm{f}(\mathrm{P} 1)=16.66 \times 10^{9} \times 1.44 / 7=3.42 \mathrm{GHz}$
$\mathrm{f}(\mathrm{P} 2)=37.5 \times 10^{9} \times 0.96 / 7=5.14 \mathrm{GHz}$
$\mathrm{f}(\mathrm{P} 1)=20 \times 10^{9} \times 2.4 / 7=6.85 \mathrm{GHz}$

Problem 4 (1.4.1-1.4.3)

1.4.1

Class A: 105 instr.
Class B: 2×105 instr.
Class C: 5×105 instr.
Class D: 2×105 instr.
Time $=$ No. instr \times CPI/clock rate
a) Total time P1 $=\left(10^{5}+2 \times 10^{5} \times 2+5 \times 10^{5} \times 3+2 \times 10^{5} \times 3\right) /\left(2.5 \times 10^{9}\right)=10.4 \times 10^{-4} \mathrm{~s}$
b) Total time P2 $=\left(10^{5} \times 2+2 \times 10^{5} \times 2+5 \times 10^{5} \times 2+2 \times 10^{5} \times 2\right) /\left(3 \times 10^{9}\right)=6.66 \times 10^{-4} \mathrm{~s}$
1.4.2 \quad CPI $=$ time \times clock rate/No. instr
a) $\quad \mathrm{CPI}(\mathrm{P} 1)=10.4 \times 10^{-4} \times 2.5 \times 10^{9} / 10^{6}=2.6$

CPI $(P 2)=6.66 \times 10^{-4} \times 3 \times 10^{9} / 10^{6}=2.0$
b) $\quad \mathrm{CPI}(\mathrm{P} 1)=6.8 \times 10^{-4} \times 2.5 \times 10^{9} / 10^{6}=1.7$
$\mathrm{CPI}(\mathrm{P} 2)=4 \times 10^{-4} \times 3 \times 10^{9} / 10^{6}=1.2$
1.4.3
a) clock cycles (P1) $=10^{5} \times 1+2 \times 10^{5} \times 2+5 \times 10^{5} \times 3+2 \times 10^{5} \times 3=26 \times 10^{5}$ clock cycles $(P 2)=10^{5} \times 2+2 \times 10^{5} \times 2+5 \times 10^{5} \times 2+2 \times 10^{5} \times 2=20 \times 10^{5}$
b) \quad clock cycles $(\mathrm{P} 1)=17 \times 10^{5}$
clock cycles $(\mathrm{P} 2)=12 \times 10^{5}$

Problem 5 (1.4.4-1.4.6)

1.4 .4 a) $(650 \times 1+100 \times 5+600 \times 5+50 \times 2) /\left(2 \mathrm{X} \mathrm{10}{ }^{9}\right)=2,125 \mathrm{~ns}$
b) $(750 \times 1+250 \times 5+500 \times 5+500 \times 2) /\left(2 \times 10^{9}\right)=2,750 \mathrm{~ns}$
1.4.5 \quad CPI $=$ time \times clock rate $/$ No. instr
a) $\mathrm{CPI}=2,125 \times 10^{-9} \times 2 \times 10^{9} / 1,400=3.03$
b) $\mathrm{CPI}=2,750 \times 10^{-9} \times 2 \times 10^{9} / 2,000=2.75$
1.4.6 a) Time $=(650 \times 1+100 \times 5+300 \times 5+50 \times 2) /\left(2 \mathrm{X} \mathrm{10}{ }^{9}\right)=1,375 \mathrm{~ns}$ Speedup $=2,125 \mathrm{~ns} / 1,375 \mathrm{~ns}=1.54$
CPI $=1,375 \times 10^{-9} \times 2 \times 10^{9} / 1,100=2.5$
b) Time $=(750 \times 1+250 \times 5+250 \times 5+500 \times 2) /\left(2 \mathrm{X} \mathrm{10}{ }^{9}\right)=2,125 \mathrm{~ns}$ Speedup $=2,750 \mathrm{~ns} / 2,125 \mathrm{~ns}=1.29$ CPI $=2,125 \times 10^{-9} \times 2 \times 10^{9} / 1,750=2.43$

Problem 6 (1.6.1-1.6.3)

1.6.1 $\mathrm{CPI}=\mathrm{T}_{\text {exec }} \times \mathrm{f} / \mathrm{No}$. Instr
a) $\quad \mathrm{CPI}$ for compiler $\mathrm{A}=1.8 \times 10^{9} / 10^{9}=1.8$

CP for compiler $\mathrm{B}=1.8 \times 10^{9} /\left(1.2 \times 10^{9}\right)=1.5$
b) $\quad \mathrm{CPI}$ for compiler $\mathrm{A}=1.1 \times 10^{9} / 10^{9}=1.1$

CP for compiler $\mathrm{B}=1.5 \times 10^{9} /\left(1.2 \times 10^{9}\right)=1.25$
1.6.2 $f_{A} / f_{B}=(N o . \operatorname{Instr}(A) X C P I(A)) /(N o . \operatorname{Instr}(B) X C P I(B))$
a) $\quad \mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}=\left(1 \mathrm{X} \mathrm{10} 0^{9} \mathrm{X} 1.8\right) /\left(1.2 \mathrm{X} 10^{9} \mathrm{X} 1.5\right)=1.00$
b) $\quad \mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}=\left(1 \mathrm{X} \mathrm{10}{ }^{9} \mathrm{X} 1.1\right) /\left(1.2 \times 10^{9} \mathrm{X} 1.25\right)=0.73$
1.6.3 $\mathrm{T}_{\text {new }} / \mathrm{T}_{\text {old }}=\left(\mathrm{I}_{\text {count }}\right.$ (new) X CPI(new)) / ($\mathrm{I}_{\text {count }}$ (old) X CPI(old) $)$
a) $\quad \mathrm{T}_{\text {new }} / \mathrm{T}_{\mathrm{A}}=\left(0.6 \mathrm{X} \mathrm{10}^{9} \mathrm{X} 1.1\right) /\left(1 \mathrm{X} \mathrm{10} 0^{9} \mathrm{X} \mathrm{1.8}\right)=0.37$
$\mathrm{T}_{\text {new }} / \mathrm{T}_{\mathrm{B}}=\left(0.6 \times 10^{9} \mathrm{X} 1.1\right) /\left(1.2 \times 10^{9} \mathrm{X} 1.5\right)=0.37$
a) $\quad \mathrm{T}_{\text {new }} / \mathrm{T}_{\mathrm{A}}=\left(0.6 \mathrm{X} \mathrm{10}{ }^{9} \mathrm{X} 1.1\right) /\left(1 \mathrm{X} \mathrm{10}{ }^{9} \mathrm{X} 1.1\right)=0.6$
$\mathrm{T}_{\text {new }} / \mathrm{T}_{\mathrm{B}}=\left(0.6 \mathrm{X} 10^{9} \mathrm{X} 1.1\right) /\left(1.2 \times 10^{9} \mathrm{X} 1.25\right)=0.44$

Problem 7 (Only part A of 1.10 .1 - 1.10.3)

1.10.1 For 1 processor system, instruction per processor $=4096$, Total instructions $=4096$

For 1 processor system, instruction per processor $=2046$ Total instructions $=4096$
For 1 processor system, instruction per processor $=1028$, Total instructions $=4096$
For 1 processor system, instruction per processor $=512$, Total instructions $=4096$
1.10.2 $\mathrm{T}=\left[\left(\mathrm{I}_{\text {count }}\left(\right.\right.\right.$ Arith) X CPI (Arith)) $+\left(\mathrm{I}_{\text {count }}(\mathrm{ldst}) \mathrm{X}\right.$ CPI (ldst)) $+\left(\mathrm{I}_{\text {count }}\right.$ (branch) X CPI (branch)) $] / \mathrm{f}$ For 1 processor, $T=(2560 \times 1+1280 \times 4+256 \times 2) / 2 \times 10^{9}=4.096$ microseconds For 2 processor, $T=(1280 \times 1+640 \times 5+128 \times 2) / 2 \times 10^{9}=2.368$ microseconds For 4 processor, $T=(640 \times 1+320 \times 7+64 \times 2) / 2 \times 10^{9}=1.504$ microseconds For 8 processor, $\mathrm{T}=(320 \times 1+160 \times 12+32 \mathrm{X} 2) / 2 \times 10^{9}=1.152$ microseconds
1.10.3 For 1 processor, $T=(2560 \times 2+1280 \times 4+256 \times 2) / 2 \times 10^{9}=5.376$ microseconds For 2 processor, $T=(1280 \times 2+640 \times 5+128 \times 2) / 2 \times 10^{9}=3.008$ microseconds For 4 processor, $T=(640 \times 2+320 \times 7+64 \times 2) / 2 \times 10^{9}=1.824$ microseconds For 8 processor, $\mathrm{T}=(320 \times 2+160 \times 12+32 \times 2) / 2 \times 10^{9}=1.312$ microseconds
Problem 8 (2.10.1-2.10.3)
2.10.1 a) add $\$ \mathrm{~s} 0, \$ \mathrm{~s} 0, \$ \mathrm{~s} 0$
b) sub \$t1, \$t2, \$t3
2.10.2 a) R type
b) R type
2.10 .3 a) 0×02108020
b) $0 \times 014 \mathrm{~B} 4822$

Problem 9

sub \$t1, \$t2, \$t3
add \$t4, \$t1, \$t3
sub \$t2, \$t1, \$4
Problem 10 (2.13.1 - 2.13.3)(Use modified instructions for 2.13.1)
2.13.1 a) 0xBABEFEF8
b) $0 x 11 \mathrm{DD} 11 \mathrm{D} 1$
2.13.2 a) 0xAAAAAAA0
b) $0 x 00 \mathrm{DD} 00 \mathrm{D} 0$
2.13 .3 a) 0×00005545
b) $0 x 0000 \mathrm{BA} 01$

Problem 11(Only part B of 2.14.1-2.14.3)
2.14.1 lui \$t1, 0x003f
ori \$t1, \$t1, 0xffe0
and \$t1, \$t0, \$t1
sll \$t1, \$t1, 9
2.14.2 andi $\$ \mathrm{t} 0, \$ \mathrm{\$ t} 0,0 \mathrm{x} 000 \mathrm{f}$
sll \$t0, \$t0, 14
ori \$t1, \$t1, 0x3fff
sll \$t1, \$t1, 18
ori \$t1, \$t1, 0x3fff
or \$t1, \$t1, \$t0
2.14.3 srl \$t0, \$t0, 28
andi $\$ \mathrm{t} 0, \$ \mathrm{\$ t0}, 0 \mathrm{x} 0007$
sll \$t0, \$t0, 14
ori \$t1, \$t1, 0x7fff
sll \$t1, \$t1, 17
ori \$t1, \$t1, 0x3fff
or \$t1, \$t1, \$t0

Problem 12

add \$t2, \$zero, 10
loopstart: beq \$t2, \$zero, loopdone
sll \$t3, \$t2, 4
\# i=10
add \$t3, \$a0, \$t3
\# Jump to end of loop if $\mathrm{i}==0$
\# \$t3 $=16$ * i
sll \$t4, \$t2, 3
\# \$t3 = address of a[4 * i]
add \$t4, \$a1, \$t4
\# \$t4 = 8*i
lw \$t4, 0(\$t4)
add \$t4, \$t4, \$t2
sw \$t4, 0(\$t3)
sub \$t2, \$t2, 1
j loopstart
loopdone: ...
\# \$t4 = address of b[2 * i]
\# \$t4 = b[2 * i]
\# \$t4 = b[2 * i] +i
\# a $[4$ * i$]=\$ \mathrm{t} 4$
\# i--
\# Jump to beginning of loop

Problem 13 (2.39.1-2.39.3)

2.39.1 $\mathrm{T}=\left[\left(\mathrm{CPI}(\right.\right.$ arith $) X \mathrm{I}_{\text {count }}($ arith $\left.)\right)+\left(\mathrm{CPI}(\mathrm{ldst}) \mathrm{X} \mathrm{I}_{\text {count }}(\right.$ ldst $\left.)\right)+\left(\mathrm{CPI}(\right.$ branch $) \mathrm{XI}_{\text {count }}($ branch $\left.\left.)\right)\right] / \mathrm{f}$
a) $T=(1 X 500 \mathrm{M}+10 \mathrm{X} 300 \mathrm{M}+3 \mathrm{X} 100 \mathrm{M}) / 5 \mathrm{G}=0.76 \mathrm{~s}$
b) $\mathrm{T}=(4 \mathrm{X} 500 \mathrm{M}+40 \mathrm{X} 300 \mathrm{M}+3 \mathrm{X} 100 \mathrm{M}) / 5 \mathrm{G}=2.86 \mathrm{~s}$
2.39 .2 a) $\mathrm{T}_{\text {new }}=(1 \mathrm{X} \mathrm{375M}+10 \mathrm{X} 300 \mathrm{M}+3 \mathrm{X} 100 \mathrm{M}) /(5 \mathrm{G} / \mathbf{1 . 1})=0.81 \mathrm{~s}$
ie., the extra clock cycle time adds sufficiently to the new CPU time such that it is not quicker than the old execution time.
b) $\mathrm{T}_{\text {new }}=(4 \mathrm{X} 375 \mathrm{M}+40 \mathrm{X} 300 \mathrm{M}+3 \mathrm{X} 100 \mathrm{M}) /(5 \mathrm{G} / \mathbf{1 . 1})=3.04 \mathrm{~s}$
ie., the extra clock cycle time adds sufficiently to the new CPU time such that it is not quicker than the old execution time.
2.39.3 a) $\mathrm{CPI}_{\text {old }}=(1 \mathrm{X} 500 \mathrm{M}+10 \mathrm{X} \mathrm{300M}+3 \mathrm{X} \mathrm{100M}) / 900 \mathrm{M}=4.22$
$\mathrm{CPI}_{\text {new }}$ (for doubling arith perf) $=(0.5 \mathrm{X} 500 \mathrm{M}+10 \mathrm{X} 300 \mathrm{M}+3 \mathrm{X} 100 \mathrm{M}) / 900 \mathrm{M}=3.94$ Speedup (for doubling arith perf) $=4.22 / 3.94=107 \%$
$\mathrm{CPI}_{\text {new }}($ for 10 x arith perf) $=(0.1 \mathrm{X} 500 \mathrm{M}+10 \mathrm{X} \mathrm{300M}+3 \mathrm{X} 100 \mathrm{M}) / 900 \mathrm{M}=3.72$ Speedup(for 10 x arith perf) $=4.22 / 3.72=113 \%$
b) $\mathrm{CPI}_{\text {old }}=(4 \mathrm{X} 500 \mathrm{M}+40 \mathrm{X} 300 \mathrm{M}+3 \mathrm{X} 100 \mathrm{M}) / 900 \mathrm{M}=15.89$
$\mathrm{CPI}_{\text {new }}$ (for doubling arith perf) $=(2 \mathrm{X} 500 \mathrm{M}+40 \mathrm{X} 300 \mathrm{M}+3 \mathrm{X} \mathrm{100M}) / 900 \mathrm{M}=14.78$ Speedup(for doubling arith perf) $=15.89 / 14.78=107 \%$
$\mathrm{CPI}_{\text {new }}($ for 10 x arith perf $)=(0.4 \mathrm{X} 500 \mathrm{M}+40 \mathrm{X} \mathrm{300M}+3 \mathrm{X} \mathrm{100M}) / 900 \mathrm{M}=13.89$
Speedup(for 10 x arith perf) $=15.89 / 13.89=114 \%$

Problem 14

objdump is a program for displaying various information about object
files. For instance, it can be used as a disassembler to view executable in assembly form. It is part of the GNU binutils for fine-grained control over executable and other binary data.

400474 push \%rbp
400475 mov \%rsp,\%rbp //Setting up stack registers
400478 movl \$0x0,-0x4(\%rbp) //Initialise sum, -0x4(\%rbp)

40047 f	movl \$0x0,-0x8(\%rbp)	//Initialize i
400486	jmp 400492<main+0x1e>	//check the loop condition before first iteration
400488	mov -0x8(\%rbp),\%eax	//load value of i into register \%eax
40048 b	add \%eax, -0x4(\%rbp)	//add i to sum
40048 e	addl \$0x1,-0x8(\%rbp)	//increment i
400492	cmpl \$0x17, -0x8(\%rbp)	//compare i to 23 (ie, 0x17)
400496	jle 400488 <main+0x14>	//if i<=23, go to beginning of loop
400498	mov -0x4(\%rbp), \%eax	//Keep value of sum in \%eax before returning
$40049 b$	leaveq	
40049 c	retq	
40049 d	nop	
40049 e	nop	
40049 f	nop	

With -O3:
mov \$0x114, \%eax
retq
The compiler optimizes the loop and determines the sum without executing the loop. Note that 0×114 or 276 in decimal is the sum of integers from 0 to 23 !

The other instructions set up context to start the program and are part of standard libraries to load a program.

