
U. Wisconsin CS/ECE 552
Introduction to Computer Architecture

Prof. Karu Sankaralingam

Introduction (Chapter 1)

www.cs.wisc.edu/~karu/cs552/

Slides combined and enhanced by Mark D. Hill from work
by Falsafi, Marculescu, Nagle, Patterson, Roth, Rutenbar,

Schmidt, Shen, Sohi, Sorin, Thottethodi, Vijaykumar, & Wood

http://www.cs.wisc.edu/~markhill/cs552/Fall2006/


CS/ECE 552 (2)

Role of Computer Architect

Plans

“Technology”

Logic Gates

SRAM

DRAM

Circuit Techniques

Packaging

Magnetic Storage

Flash Memory

Goals

Function

Performance

Reliability

Cost/Manufacturability

Energy Efficiency

Time to Market

Computer

PCs

Servers

PDAs

Mobile Phones

Supercomputers

Game Consoles

Embedded

Design

Manufacturing



CS/ECE 552 (3)

Basic Division of Hardware

• In space and time

– In space 

Control

Datapath

Memory

Output

Input



CS/ECE 552 (4)

Basic Division of Hardware

• In time
– Fetch the instruction from memory           add r1, r2, r3
– Decode the instruction - what does this mean?
– Read input operands                                   read r2, r3
– Perform operation                                      add
– Write results                                             write to r1
– Determine next instruction                        pc := pc + 4



CS/ECE 552 (5)

Moore‟s Law(s)

• Technologists will double # transistors per 
chip doubles every two years (or 18 months)

• Or architects will double performance per 
chip doubles every two years (or 18 months)

• These can‟t go on forever, but don‟t 
underestimate a trillion dollar industry



CS/ECE 552 (6)

More Recent Microprocessor

• Intel Pentium4 [2003]

– 32/64-bit data

– 55M transistors

– 0.90 m CMOS

– 3.4 GHz

– 1.2 V

– 101 mm2



CS/ECE 552 (7)

Building computer chips

• Complex multi-step process

– slice ingots -> wafers

– process wafers (many steps) -> patterned wafers

– dice patterned wafers -> dies

– test dies -> good dies

– bond good die to package -> packaged dies (parts)

– test parts -> good parts

– ship to customers -> make money!



U. Wisconsin CS/ECE 552
Introduction to Computer Architecture

Prof. Karu Sankaralingam

Instructions (Chapter 2)

www.cs.wisc.edu/~karu/cs552/

Slides combined and enhanced by Mark D. Hill from work
by Falsafi, Marculescu, Nagle, Patterson, Roth, Rutenbar,

Schmidt, Shen, Sohi, Sorin, Thottethodi, Vijaykumar, & Wood

http://www.cs.wisc.edu/~markhill/cs552/Fall2006/


CS/ECE 552 (9)

Instruction Set Architecture (ISA)

• The “contract” between software and hardware

• Functional definition of operations, modes, and storage locations 

supported by hardware

• Precise description of how software can invoke and access them

• Strictly speaking, ISA is the architecture

• Informally, architecture is also used to talk about the big picture of 

implementation

• Better to call this micro-architecture



CS/ECE 552 (10)

Aspects of ISAs

1. The Von Neumann model

• Implicit structure of all modern ISAs

2. Format

• Length and encoding

3. Operations

4. Operand model

• Where are operands stored and how do address them? 

5. Datatypes and operations 

6. Control

• Running example: MIPS

• Your project will use 16-bit MIPS-lite

• Touch on x86



CS/ECE 552 (11)

(2) Instruction Format

• Length

1. Fixed length

• 32 or 64 bits (your project: 16 bit ISA)

+ Simple implementation: compute next PC using only PC

– Code density

2. Variable length

– Complex implementation

+ Code density

3. Compromise: two lengths

• Example: MIPS16

• Encoding

• A few simple encodings simplify decoder implementation

• Complex encoding can improve code density



CS/ECE 552 (12)

MIPS Format

• Length

• 32-bits

• MIPS16: 16-bit variants of common instructions for density

• Encoding

• 3 formats, simple encoding

• Q: how many operation types can be encoded in 6-bit opcode?

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5) Rd(5)Rd(5) Sh(5)Sh(5) Func(6)Func(6)RR--typetype

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5) Immed(16)Immed(16)II--typetype

Op(6)Op(6) Target(26)Target(26)JJ--typetype



CS/ECE 552 (13)

(4) Operations Act on Operands

• If you’re going to add, you need at least 3 operands

• Two source operands, one destination operand

• Question #1: Where can operands come from?

• Question #2: And how are they specified?

• Running example: A = B + C

• Several options for answering both questions

• Discuss: Memory-Only & Registers

• Not Discuss: Stack & Accumulator



CS/ECE 552 (18)

Memory Addressing

• ISAs assume “virtual” address size

• Either 32  or 64 bits

• Program can name 232 bytes (4GB) or 264 bytes (16PB)

• ISA point? no room for even one address in a 32-bit instruction

• Addressing mode: way of specifying address

• Displacement:  ld R1,(R2) R1=mem[R2] 

• Indirect: ld R1,8(R2) R1=mem[R2+8] 

• Index-base: ld R1,(R2,R3) R1=mem[R2+R3] 

• Memory-indirect: ld R1,@(R2) R1=mem[mem[R2]] 

• Auto-increment: ld R1,(R2)+ R1=mem[R2++]

• Scaled: ld R1,(R2,R3,32,8) R1=mem[R2+R3*32+8]

• What high-level program idioms are these used for?



CS/ECE 552 (19)

msb lsb

3          2          1           0

little endian byte 0

0          1          2           3

big endian byte 0

Addressing Issue: Endian-ness

Byte Order

• Big Endian: byte 0 is 8 most significant bits IBM 360/370, 

Motorola 68k, MIPS, SPARC, HP PA-RISC

• Little Endian: byte 0 is 8 least significant bits Intel 80x86, DEC 

Vax, DEC/Compaq Alpha



CS/ECE 552 (20)

• Alignment: require that objects fall on address that 

is multiple of  their size

• 32-bit integer

• Aligned if address % 4 = 0  [% is symbol for “mod”]

• Aligned: lw @XXXX00

• Not: lw @XXXX10

• 64-bit integer?

• Aligned if ?

• Question: what to do with unaligned accesses 

(uncommon case)?

• Support in hardware? Makes all accesses slow

• Trap to software routine? Possibility

• MIPS? ISA support: unaligned access using two 

instructions: 
lw @XXXX10 = lwl @XXXX10; lwr @XXXX10

0      1      2      3

Aligned

Not

Another Addressing Issue: Alignment

Byte #



CS/ECE 552 (21)

(6) Control Instructions I

• One issue: testing for conditions

• Option I: compare and branch instructions

blti $1,10,target

+ Simple, – two ALUs: one for condition, one for target address 

• Option II: implicit condition codes

subi $2,$1,10   // sets “negative” CC

bn target

+ Condition codes set “for free”, – implicit dependence is tricky

• Option III: condition registers, separate branch insns

slti $2,$1,10

bnez $2,target

– Additional instructions, + one ALU per, + explicit dependence



CS/ECE 552 (22)

Control Instructions II

• Another issue: computing targets
• Option I: PC-relative

• Position-independent within procedure

• Used for branches and jumps within a procedure

• Option II: Absolute

• Position independent outside procedure

• Used for procedure calls

• Option III: Indirect (target found in register)

• Needed for jumping to dynamic targets

• Used for returns, dynamic procedure calls, switches

• How far do you need to jump?

• Typically not so far within a procedure (they don’t get that big)

• Further from one procedure to another



CS/ECE 552 (23)

MIPS Control Instructions

• MIPS uses all three

• PC-relative  conditional branches: bne, beq, blez, etc. 

• 16-bit relative offset, <0.1% branches need more

• PC = PC + 4 + immediate if condition is true (else PC=PC+4)

• Absolute  unconditional jumps: j target

• 26-bit offset (can address 228 words < 232
 what gives?)

• Indirect  Indirect jumps: jr $rd

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5) Immed(16)Immed(16)II--typetype

Op(6)Op(6) Target(26)Target(26)JJ--typetype

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5) Rd(5)Rd(5) Sh(5)Sh(5) Func(6)Func(6)RR--typetype



CS/ECE 552 (24)

Control Instructions III

• Another issue: support for procedure calls?

• We “link” (remember) address of the calling instruction + 4 (current 

PC + 4) so we can return to it after the procedure

• MIPS

• Implicit return address register is $ra(=$31)

• Direct jump-and-link: jal address

 $ra = PC+4; PC = address

• Can then return from call with: jr $ra

• Or can call with indirect jump-and-link: jalr $rd, $rs

 $rd = PC+4; PC = $rs   // explicit return address register

• Then return with: jr $rd



CS/ECE 552 (25)

RISC vs. CISC

• RISC: reduced-instruction set computer

• Coined by P+H in early 80’s

• CISC: complex-instruction set computer

• Not coined by anyone, term didn’t exist before “RISC”

• Religious war (one of several) started in mid 1980’s

• RISC (MIPS, Alpha) “won” the technology battles

• CISC (IA32 = x86) “won” the commercial war

• Compatibility a stronger force than anyone (but Intel) thought

• Intel beat RISC at its own game … more on this soon



CS/ECE 552 (26)

Intel x86: The Penultimate CISC (VAX ultimate)

• Variable length instructions: 1-16 bytes

• Few registers: 8 and each one has a special purpose

• Multiple register sizes: 8,16,32 bit (for backward compatibility)

• Accumulators for integer instrs, and stack for FP instrs

• Multiple addressing modes: indirect, scaled, displacement

• Register-register, memory-register, and memory-register insns

• Condition codes

• Instructions for memory stack management (push, pop)

• Instructions for manipulating strings (entire loop in one instruction)

• Summary: yuck!



U. Wisconsin CS/ECE 552
Introduction to Computer Architecture

Prof. Karu Sankaralingam

Arithmetic Part A (3.1-3.5, B.5-B.6)

www.cs.wisc.edu/~karu/cs552/

Slides combined and enhanced by Mark D. Hill from work
by Falsafi, Marculescu, Nagle, Patterson, Roth, Rutenbar,

Schmidt, Shen, Sohi, Sorin, Thottethodi, Vijaykumar, & Wood

http://www.cs.wisc.edu/~markhill/cs552/Fall2006/


CS/ECE 552 (28)

Integer Representation

• Sign Magnitude:         One's Complement     Two's Complement
000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = -0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 = -3 111 = -0 111 = -1

• Balance, number of zeros, ease of arithmetic



CS/ECE 552 (29)

Two's Complement Operations

• Negating a two's complement number:  invert all bits and add 1

– 1010  -> 0101 + 1 = 0110

– 0110  -> 1001 + 1 = 1010

• Converting n bit numbers into numbers with more than n bits:

– copy the most significant bit (the sign bit) 

0010  -> 0000 0010

1010  -> 1111 1010

– Called "sign extension"  



CS/ECE 552 (30)

Full adder

• Three inputs and two outputs
• Cout, s = F(a,b,Cin)

– Cout : only if at least two inputs are set
– S : only if exactly one input or all three inputs are set

• Logic?

Cout

s

a

b

Cin

a

b

Cin

a

b

Cin

a

b

Cin

a

b

a

Cin

Cin

b



CS/ECE 552 (31)

Subtract
• A - B = A + (– B)

– form two complement by invert and add one

A

B

1-bit

Full

Adder

CarryOut

M
u

x

CarryIn

Result

add

and

or

invert



CS/ECE 552 (32)

Ripple-carry adder

A0

B0

1-bit

ALU
Result0

CarryIn0

CarryOut0

A1

B1

1-bit

ALU
Result1

CarryIn1

CarryOut1

A2

B2

1-bit

ALU
Result2

CarryIn2

CarryOut2

A3

B3

1-bit

ALU
Result3

CarryIn3

CarryOut3



CS/ECE 552 (33)

Carry look-ahead

• An approach in-between our two extremes

• Motivation: 

– If we didn't know the value of carry-in, what 
could we do?

– When would we always generate a carry?

•gi = ai bi

– When would we propagate the carry?

•pi = ai + bi

• Did we get rid of the ripple?



CS/ECE 552 (34)

Carry-lookahead adder
A B C-out

0 0 0 “kill”

0 1 C-in “propagate”

1 0 C-in “propagate”

1 1 1 “generate”

A0

B1

S
G
P

G = A and B

P = A xor B

A

B

S
G
P

A

B

S
G
P

A

B

S
G
P

Cin

C1 =G0 + C0 P0

C2 = G1 + G0 P1 + C0 P0 P1

C3 = G2 + G1 P2 + G0 P1 P2 + C0 P0 P1 P2

G

C4 = . . .

P



CS/ECE 552 (35)

Carry-Lookahead Adder

• Waitaminute!
– Nothing has changed
– Fanin problems if you flatten! 

• Linear fanin, not exponential

– Ripple problem if you don‟t!
• Enables divide-and-conquer
• Figure out Generate and Propagate for 4-bits 

together
• Compute hierarchically



CS/ECE 552 (36)

Cascaded CLA
C

L

A

4-bit

Adder

4-bit

Adder

4-bit

Adder

C1 =G0 + C0 P0

C2 = G1 + G0 P1 + C0 P0 P1

C3 = G2 + G1 P2 + G0 P1 P2 + C0 P0 P1 P2

G

P

G0
P0

C4 = . . .

C0



CS/ECE 552 (37)

Overflow detection
• Carry into MSB       Carry out of MSB

– For N-bit ALU: Overflow = CarryIn[N - 1]  XOR  CarryOut[N - 1]

A0

B0

1-bit

ALU
Result0

CarryIn0

CarryOut0

A1

B1

1-bit

ALU
Result1

CarryIn1

CarryOut1

A2

B2

1-bit

ALU
Result2

CarryIn2

A3

B3

1-bit

ALU
Result3

CarryIn3

CarryOut3

Overflow

X Y X   XOR   Y

0 0 0

0 1 1

1 0 1

1 1 0



CS/ECE 552 (38)

Barrel Shifter

Stage 0

Stage 1

Stage 2

shamt 0

shamt 1

shamt 2

d6d7 d0d1 0d0

s07 s01 s00

s05s07 0s01 0s00

s17 s11 s10

s13s17 0s10

dout7 dout0

s00s02

s12

s10s14

dout4 dout3

0s13



U. Wisconsin CS/ECE 552
Introduction to Computer Architecture

Prof. Karu Sankaralingam

Performance (Chapter 4)

www.cs.wisc.edu/~karu/cs552/

Slides combined and enhanced by Mark D. Hill from work
by Falsafi, Marculescu, Nagle, Patterson, Roth, Rutenbar,

Schmidt, Shen, Sohi, Sorin, Thottethodi, Vijaykumar, & Wood

http://www.cs.wisc.edu/~markhill/cs552/Fall2006/


CS/ECE 552 (40)

Performance of Computers

• Want

– Highest Performance (modeling oil fields)

– Lowest Cost (doorknob)

– Lowest Cost/Performance (most common)

• Performance will depend on workload

• Computers not completely interchangable

– PC cannot (currently) have 128 GB memory



CS/ECE 552 (41)

Defining Performance

• What is important to who?

1. Computer system user

– minimize elapsed time for program = 
time_end - time_start

– called response time

2. Computer center manager

– maximize completion rate =  #jobs/second

– called throughput



CS/ECE 552 (42)

Performance Comparison

• Machine A is n times faster than machine B iff

– perf(A)/perf(B) = time(B)/time(A) = n

• Machine A is x% faster than machine B iff

– perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

• E.g., A 10s, B 15s

– 15/10 = 1.5 => A is 1.5 times faster than B

– 15/10 = 1 + 50/100 => A is 50% faster than B



CS/ECE 552 (43)

Iron law

• Time/program =
instrs/program x cycles/instr x sec/cycle

• sec/cycle (a.k.a. cycle time, clock time) - „heartbeat‟ 
of computer
– mostly determined by technology and CPU 

organization
• cycles/instr (a.k.a. CPI)

– mostly determined by ISA and CPU organization
– overlap among instructions makes this smaller

• instr/program (a.k.a. instruction count)
– instrs executed NOT static code
– mostly determined by program, compiler, ISA



CS/ECE 552 (44)

Beware of Millions of Instr / Sec

• MIPS = instruction count/(execution time x 106) 

= clock rate/(CPI x 106) (How?)

• Often ignores program & quotes “peak”
– ideal conditions =>  guarantee not to exceed!!

• Ignores instruction/program changes
• E.g., adding floating-point H/W can hurt MIPS
• 50 simple instructions replace by one slow FP op

• Okay if
• instrs/program constant (e.g. same executable)
• real program; not peak



CS/ECE 552 (45)

Beware of Millions of FP Ops / Sec

• MFLOPS =
FP ops in program/(execution time x 106)

• Assumes FP ops independent of compiler/ISA
– Assumption not true
– may not have divide instruction in ISA
– optimizing compilers can remove

• Relative MIPS and normalized MFLOPS
– adds to confusion! (see book)



CS/ECE 552 (46)

Which Programs?

• Execution time of what?

• Best case - you always run the same set of programs

– port them and time the whole “workload”

• In reality, use benchmarks

– programs chosen to measure performance

– predict performance of actual workload (hopefully)

– saves effort and money

– representative? honest?

– Example Suites: EEMBC, MediaBench, SPEC, &TPC 



CS/ECE 552 (47)

How to Average

• Another: arithmetic mean (same result: B 9.1 times faster 
than A )

• Arithmetic mean of times:                             for n programs

• AM(A) = 1001/2 = 500.5
• AM(B) = 110/2 = 55
• 500.5/55 = 9.1

• Valid only if programs run equally often, else use “weight” 
factors

• Weighted arithmetic mean:

ntime
n

i

i /
1

ntimeweight
n

i

ii /
1



CS/ECE 552 (48)

Harmonic Mean

• Harmonic mean of rates  =        

– Use HM if forced to start and end with rates

• Trick to do arithmetic mean of times
but using rates and not times

n
rate

n

i i1

1

1



CS/ECE 552 (49)

Geometric Mean

• Don‟t use arithmetic mean on ratios (normalized numbers)

• Use geometric mean for ratios

– geometric mean of ratios =  

– Use GM  if forced to use ratios

• Independent of reference machine (math property)

• In the example, GM for machine A is 1, for machine B is also 1

• Normalized with respect to either machine

• Used in SPECint and SPECfp

n

n

i

iratio
1



CS/ECE 552 (50)

Summary for Averages

• Use AM for times

• Use HM if forced to use rates

• Use GM if forced to use ratios

• Better yet

– Use unnormalized numbers to compute time



CS/ECE 552 (51)

Amdahl‟s Law 

• Why does the common case matter the most?

• Let an optimization speed f fraction of time by a factor of s

• assuming that old time = T, what is the speedup?

– f is the “affected” fraction of T

– (1-f) is the unaffected fraction

• Speedup =   

• =
newnew

oldold

new

old

affectedunaffected

affectedunaffected

time

time

T
s

f
Tf

TfTf

)1(

)1(



CS/ECE 552 (52)

Amdahl‟s Law: Limit

• Make common case fast 
because:

fsffs 1

1

1

1
lim

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

f

S
p

e
e

d
u

p



U. Wisconsin CS/ECE 552
Introduction to Computer Architecture

Prof. Karu Sankaralingam

Single-Cycle Processor (5.1-5.4)

www.cs.wisc.edu/~karu/cs552/

Slides combined and enhanced by Mark D. Hill from work
by Falsafi, Marculescu, Nagle, Patterson, Roth, Rutenbar,

Schmidt, Shen, Sohi, Sorin, Thottethodi, Vijaykumar, & Wood

http://www.cs.wisc.edu/~markhill/cs552/Fall2006/


CS/ECE 552 (54)

Processor Implementation

Control

Datapath

Memory

Output

Input



CS/ECE 552 (55)

Review: D Flip-flop

• D flip-flop - built from 2 D-latches
– while clock high, D flows into 1st latch, but not 2nd
– in 2nd Q retains old value

• Remember D at falling edge & propagate thru 2nd latch

D            Q

D-Latch

C 

D            Q

D-Latch

C 

D

C

Q

D            Q

D-FF

C 



CS/ECE 552 (56)

D-FF WriteEnable (preferred design)

1

MUX

0

D                   Q

D-FF

C 

write enable clock

input output

D            Q

D-FF-WE

WE      C 

1



CS/ECE 552 (57)

552 Clocking Methodology Rules

• We provide D-FF design

• Use this D-FF for all processor state

• Same unqualified clock for all D-FFs

• Combinational logic must finish in one cycle

Comb. Logic D-FF

D-FF

D-FF

…

D-FF

global clock



CS/ECE 552 (58)

Processor Implementation

• Next : Single-Cycle Datapath

Control

Datapath

Memory

Output

Input



CS/ECE 552 (59)

32

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

55 5

Rw Ra Rb

32 32-bit

Registers

Rs

Rt

Rt

Rd
RegDst

E
x

ten
d

er

M
u

x

32
16

imm16

ALUSrcExtOp

M
u

x

MemtoReg

Clk

Data In
WrEn32 Adr

Data

Memory

MemWr

A
L

U
Equal

Instruction<31:0>

0

1

0

1

01

<
2

1
:2

5
>

<
1

6
:2

0
>

<
1
1

:1
5

>

<
0

:1
5

>

Imm16RdRtRs

=

A
d

d
er

A
d

d
er

P
C

Clk

0
0

M
u

x

4

nPC_sel

P
C

 E
x

t

Adr

Inst

Memory

im
m

1
6



CS/ECE 552 (60)

Cycletime

• What should the clock period be?
– Enough to compute the next state values

• Propagation clk-to-Q (new state)
• Comb. Logic delay
• Setup requirements

Storage 

Comb. Logic

Setup time



CS/ECE 552 (61)

Processor Implementation

• Next : Control for Single-Cycle Datapath

Control

Datapath

Memory

Output

Input



CS/ECE 552 (62)

Control for Datapath

ALUctrRegDst ALUSrcExtOp MemtoRegMemWr Equal

Instruction<31:0>

<
2

1
:2

5
>

<
1

6
:2

0
>

<
1
1

:1
5

>

<
0

:1
5

>

Imm16RdRsRt

nPC_sel

Adr

Inst

Memory

DATA PATH

Control

Op

<
2

1
:2

5
>

Fun

RegWr



CS/ECE 552 (63)

Controls for Add Operation
• R[rd] = R[rs] + R[rt]

32

ALUctr = Add

Clk

busW

RegWr = 1

32

32

busA

32

busB

55 5

Rw Ra Rb

32 32-bit

Registers

Rs

Rt

Rt

Rd
RegDst = 1

E
x

ten
d

er

M
u

x

Mux

32
16

imm16

ALUSrc = 0

ExtOp = x

M
u

x

MemtoReg = 0

Clk

Data In
WrEn

32

Adr

Data

Memory

32

MemWr = 0
A

L
U

Instruction

Fetch Unit
Clk

Zero

Instruction<31:0>

0

1

0

1

01
<

2
1

:2
5

>

<
1

6
:2

0
>

<
1
1

:1
5

>

<
0

:1
5

>

Imm16RdRsRt

nPC_sel= +4



CS/ECE 552 (64)

Controls: Logic equations
• nPC_sel <= if (OP == BEQ) then EQUAL else 0

• ALUsrc <= if (OP == “R-type”) then “regB” 
elseif (OP == BEQ) then regB, else “imm”

• ALUctr <= if (OP == “R-type”) then   funct
elseif (OP == ORi) then “OR” 

elseif (OP == BEQ) then “sub” else 
“add”

• ExtOp <= if (OP == ORi) then “zero” else “sign”

• MemWr <= (OP ==  Store)

• MemtoReg <= (OP ==  Load)

• RegWr: <= if ((OP ==  Store) || (OP == BEQ)) then 0 else 1

• RegDst: <= if ((OP ==  Load) || (OP == ORi)) then 0 else 1



CS/ECE 552 (65)

Global Control: Truth Table

R-type ori lw sw beq jump

RegDst

ALUSrc

MemtoReg

RegWrite

MemWrite

Branch

Jump

ExtOp

ALUop<N:0>

1

0

0

1

0

0

0

x

“R-type”

0

1

0

1

0

0

0

0

Or

0

1

1

1

0

0

0

1

Add

x

1

x

0

1

0

0

1

Add

x

0

x

0

0

1

0

x

Subtract

x

x

x

0

0

0

1

x

xxx

op 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010

Main

Control

op

6

ALU

Control

(Local)

func

N

6
ALUop

ALUctr

3

A
L

U



CS/ECE 552 (66)

Truth Table for RegWrite

R-type ori lw sw beq jump

RegWrite 1 1 1 0 0 0

op 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010

• RegWrite  =  R-type  +  ori  +  lw

= !op<5> & !op<4> & !op<3> & !op<2> & !op<1> & !op<0> (R-type)

+  !op<5> & !op<4> & op<3> & op<2> & !op<1> & op<0> (ori)

+  op<5> & !op<4> & !op<3> & !op<2> & op<1> & op<0> (lw)

op<0>

op<5>. .
op<5>. .

<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

R-type ori lw sw beq jump

RegWrite



CS/ECE 552 (67)

PLA implementation

op<0>

op<5>. .
op<5>. .

<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

op<5>. .
<0>

R-type ori lw sw beq jump
RegWrite

ALUSrc

MemtoReg

MemWrite

Branch

Jump

RegDst

ExtOp

ALUop<2>

ALUop<1>

ALUop<0>



CS/ECE 552 (68)

Putting it all together

32

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

55 5

Rw Ra Rb

32 32-bit

Registers

Rs

Rt

Rt

Rd
RegDst

E
x

ten
d

er

M
u

x

Mux

32
16

imm16

ALUSrc

ExtOp

M
u

x

MemtoReg

Clk

Data In
WrEn

32

Adr

Data

Memory

32

MemWr
A

L
U

Instruction

Fetch Unit
Clk

Zero

Instruction<31:0>

0

1

0

1

01
<

2
1

:2
5

>

<
1

6
:2

0
>

<
1
1

:1
5

>

<
0

:1
5

>

Imm16RdRsRt

Main

Control

op

6

ALU

Controlfunc

6

3

ALUop
ALUctr

3
RegDst

ALUSrc

:

Instr<5:0>

Instr<31:26>

Instr<15:0>

nPC_sel



U. Wisconsin CS/ECE 552
Introduction to Computer Architecture

Prof. Karu Sankaralingam

Pipelining (Chapter 6)

www.cs.wisc.edu/~karu/cs552/

Slides combined and enhanced by Mark D. Hill from work
by Falsafi, Marculescu, Nagle, Patterson, Roth, Rutenbar,

Schmidt, Shen, Sohi, Sorin, Thottethodi, Vijaykumar, & Wood

http://www.cs.wisc.edu/~markhill/cs552/Fall2006/


CS/ECE 552 (70)

Sequential Laundry

• Sequential laundry takes 8 hours for 4 loads

• If they learned pipelining, how long would  laundry 
take? 

30T

a

s

k

O

r

d

e

r

B

C

D

A
Time

30 30 3030 30 3030 30 30 3030 30 30 3030

6 PM 7 8 9 10 11 12 1 2 AM



CS/ECE 552 (71)

Pipelining lessons • Pipelining doesn‟t help 
latency of single task, it 
helps throughput of entire 
workload

• Multiple tasks operating 
simultaneously using 
different resources

• Potential speedup = Number 
pipe stages

• Pipeline rate limited by 
slowest pipeline stage

• Unbalanced lengths of pipe 
stages reduces speedup

• Time to “fill” pipeline and 
time to “drain” it reduces 
speedup

• Stall for Dependences

6 PM 7 8 9

Time

B

C

D

A

3030 30 3030 30 30

T

a

s

k

O

r

d

e

r



CS/ECE 552 (72)

Seek to Pipeline Instructions

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3
A

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg



CS/ECE 552 (73)

Non-uniform stages

Maximum Speedup Number of stages

Speedup Time for unpipelined operation

Time for longest stage



CS/ECE 552 (74)

Pipeline Forecast: Single-Cycle Datapath

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

Instruction

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

Address

Data


memory
1

ALU

result

M

u

x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/


register file read

EX: Execute/


address calculation

MEM: Memory access WB: Write back



CS/ECE 552 (75)

Instruction


memory

Address

4

32

0

Add
Add


result

Shift


left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M

u

x

0

1

Add

PC

0
Write

data

M

u

x

1

Registers

Read

data 1

Read

data 2

Read

register 1

Read

register 2

16
Sign


extend

Write

register

Write

data

Read

data

1

ALU

result

M

u

x

ALU

Zero

ID/EX

Data


memory

Address

Pipeline Forecast: Pipelined Datapath

• Pipeline datapath with registers



CS/ECE 552 (76)

PC
Instruction


memory

Registers

M

u

x

M

u

x

M

u

x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data

memory

M

u

x

Hazard

detection


unit

Forwarding


unit

0

M

u

x

IF/ID

In
s
tr

u
c
ti
o

n

ID/EX.MemRead

IF
/I

D
W

ri
te

P
C

W
ri

te

ID/EX.RegisterRt

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

Rt

Rs

Rd

Rt
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Pipeline Forecast: Pipelined Control



CS/ECE 552 (77)

Pipeline Forecast: Big Picture

• Datapath similar to single-cycle datapath

• Partition datapath with pipeline latches (D-FFs)

• Naïve Control

– Generate single-cycle control signals

– Pass control signals through pipeline latches

– Apply control signals at appropriate stage/cycle

• Truth is more complex (instruction interact)



CS/ECE 552 (78)

Hazards
• Structural hazards

– Two instructions need the same hardware

• Data Hazards

– Data not ready

• Control Hazards

– Which instruction to fetch? Not known.



CS/ECE 552 (79)

Single Memory: Structural Hazard

Detection is easy in this case! (right half highlight means read, left half write)

Mem

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem Reg

A
L

UMem Reg Mem Reg



CS/ECE 552 (80)

Structural Hazards

• If 1.3 memory accesses per instruction

– How?

– 1 per instruction for instruction fetch

– Fraction for data load/store
• Depends on instruction mix

• 20% load + 10% store

• 15% load + 15% store

• CPI is atleast 1.3 (otherwise memory is used 
more than 100%)



CS/ECE 552 (81)

Data Hazards

add r1 ,r2,r3

sub r4, r1 ,r3

and r6, r1 ,r7

or   r8, r1 ,r9

xor r10, r1 ,r11



CS/ECE 552 (82)

Hazards on r1
• Dependencies backwards in time

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg



CS/ECE 552 (83)

Data Hazard Solution

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg



CS/ECE 552 (84)

Logic equations for Hazard Detection
• Restatement of equations

• Text book version

– WB stage is not really a hazard
• Data is written in first half of cycle, read in 2nd

half

– EX/MEM.RegisterRd = ID/EX.RegisterRs

– EX/MEM.RegisterRd = ID/EX.RegisterRt

– MEM/WB.RegisterRd = ID/EX.RegisterRs

– MEM/WB.RegisterRd = ID/EX.RegisterRt



CS/ECE 552 (85)

Base Pipelined Datapath
• Simplified representation of pipelined datapath

– To avoid clutter

Registers

M

u

x M


u

x

ALU

ID/EX MEM/WB

Data


memory

M

u

x

Forwarding


unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M

u

x

ALU

ID/EX MEM/WB

Data


memory

EX/MEM

a. No forwarding

Registers

M

u

x



CS/ECE 552 (86)

Registers

M

u

x M


u

x

ALU

ID/EX MEM/WB

Data


memory

M

u

x

Forwarding


unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M

u

x

ALU

ID/EX MEM/WB

Data


memory

EX/MEM

a. No forwarding

Registers

M

u

x

Datapath w/Forwarding Unit

• ForwardA/ForwardB: 01->Mem, 10->EX



CS/ECE 552 (87)

Forwarding Control Behavior
• EX hazard

If (EX/MEM.RegWrite AND      // not store or branch

EX/MEM.RegsterRd != 0   AND  // Result is used

EX/MEM.RegisterRd = ID/EX.RegisterRs)

ForwardA = 10

If (EX/MEM.RegWrite AND

EX/MEM.RegsterRd != 0   AND

EX/MEM.RegisterRd = ID/EX.RegisterRt)

ForwardB = 10



CS/ECE 552 (88)

Forwarding Control Behavior
• MEM hazard

If (MEM/WB.RegWrite AND
MEM/WB.RegsterRd != 0   AND
MEM/WB.RegisterRd = ID/EX.RegisterRs)
ForwardA = 01

If (MEM/WB.RegWrite AND
MEM/WB.RegsterRd != 0   AND
MEM/WB.RegisterRd = ID/EX.RegisterRt)
ForwardB = 01

• Does this fully meet our requirements ?



CS/ECE 552 (89)

Lookahead: RAW hazard with load 
inst

• Forwarding as solution to RAW hazard
– possible if no (true) dependence going backwards 

in time
– True for R-type instructions

• Data available after EX stage (i.e., at ALUOut)

– Not true for load instruction

Time (clock cycles)

lw r1,0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg



CS/ECE 552 (90)

Solution

• Catch-all solution for hazards

– Stall 
• always works, but hurts performance

• Use as last resort

• Challenge:

– Modify pipeline implementation to support 
stalls when hazards are detected



CS/ECE 552 (91)

Stalling the pipeline
• Instruction cannot proceed

– Following instruction must be stalled too.

– Otherwise state in pipeline registers is 
overwritten

• Preceding instructions may proceed as usual

• Solution

– inject NOP into EX/Mem pipeline

– Prevent writes to PC to IF/ID register



CS/ECE 552 (92)

PC
Instruction


memory

Registers

M

u

x

M

u

x

M

u

x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data

memory

M

u

x

Hazard

detection


unit

Forwarding


unit

0

M

u

x

IF/ID

In
s
tr

u
c
ti
o

n

ID/EX.MemRead

IF
/I

D
W

ri
te

P
C

W
ri

te

ID/EX.RegisterRt

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

Rt

Rs

Rd

Rt
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Datapath



CS/ECE 552 (93)

When conditional branches resolved?

PC

Instruction

memory

Address

In
s
tr

u
c
ti
o
n

Instruction

[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32

Instruction

[15– 0]

0

0
Registers

Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Sign

extend

M

u

x

1
Write


data

Read


data M

u

x

1

ALU


control

RegWrite

MemRead

Instruction

[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data

memory

PCSrc

Zero

Add
Add


result

Shift


left 2

ALU


result

ALU

Zero

Add

0

1

M

u

x

0

1

M

u

x



CS/ECE 552 (94)

Branch Hazards

• Branch resolved in the MEM stage
• If taken, 

– PC<- PC + 4 + SX(Imm*4)
– 40 + 4 + 7*4 = 72

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program


execution


order


(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg



CS/ECE 552 (95)

Control/Branch Hazards

• Branch resolved in the MEM stage

– But next instruction has to fetched in the 
next cycle

– Reduce the penalty by moving decision 
earlier in pipeline
• Need additional comparator (r1=r2?) and adder

(PC+4+SX(IMM)*4)

– Reduced penalty from 3 cycles to 1 cycle



CS/ECE 552 (96)

PC
Instruction


memory

4

Registers

M

u

x

M

u

x

M

u

x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data

memory

M

u

x

Hazard

detection


unit

Forwarding

unit

IF.Flush

IF/ID

Sign

extend

Control

M

u

x

=

Shift

left 2

M

u

x

Datapath for branch hazards



CS/ECE 552 (97)

Eliminate 1-cycle stall?

• Two solutions

– Predict branch is always not taken
• More sophisticated prediction schemes

– Delay slots
• Compiler‟s problem

• Walkthrough example for solution #1

– Predict not taken



CS/ECE 552 (98)

Dynamic Branch Prediction

• Better than static prediction

– Branches are predictable

– ~90% of program execution time is spent in 
~10% of code (inner loops)

– Think of a program loop of N iterations
• Taken N-1 times

• Not taken last time



CS/ECE 552 (99)

Dynamic Branch Prediction

• How does hardware “learn” branch behavior?
• Store each branch instruction‟s history ***

– If a branch was taken “recently”, predict taken
• One bit saturating counter
• Two bit counters

Taken

Taken

Taken

Taken

Not taken

Not taken

Not taken

Not taken

Predict taken Predict taken

Predict not taken Predict not taken

97108/Patterson


Figure 06.53

Predict taken

Predict not taken

Not taken

Taken

Taken Not taken

1-bit branch predictor 2-bit branch predictor



CS/ECE 552 (100)

“Easy way”* to hide branch hazard delay

• Delayed branch
– Instruction after 

branch always 
executes

– Find an 
independent 
instruction from 
before the branch

– Find instructions 
from Taken 
(target) OR from 
Not Taken (fall-
through) code 
section

• * For Architects

a.  From before b.  From target c.  From fall through

sub $t4, $t5, $t6





…





add $s1, $s2, $s3





if $s1 = 0 then








add $s1, $s2, $s3





if $s1 = 0 then





 








add $s1, $s2, $s3





if $s1 = 0 then





  sub $t4, $t5, $t6














add $s1, $s2, $s3





if $s1 = 0 then





   sub $t4, $t5, $t6

add $s1, $s2, $s3





if $s2 = 0 then





    

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6







if $s2 = 0 then





 add $s1, $s2, $s3



CS/ECE 552 (101)

PC
Instruction


memory

4

Registers

M

u

x

M

u

x

ALU

M

u

x

Data

memory

M

u

x

40000040

Sign

extend Sign


extend

ALU Address

Write

data

Superscalar Datapath

• Replicate datapath elements



CS/ECE 552 (102)

Dynamic Scheduling
• No need to suffer hazards if other useful 

work can be achieved

• Load Hazard results in pipeline stall

– But other instructions are ready

– “Oh! But we cannot execute instructions 
out of order” – Not really

lw       $t0, 20($s2) 

addu   $t1, $t0, $t2

sub     $s4, $s4, $t3

slti      $t5, $s4, $t3



CS/ECE 552 (103)

Pentium 4 pipeline

• Pipeline too much; c.f., Core2


