U. Wisconsin CS/ECE 552 Introduction to Computer Architecture

Prof. Karu Sankaralingam

Introduction (Chapter 1)

www.cs.wisc.edu/~karu/courses/cs552/

Slides combined and enhanced by Karu Sankaralingam from work by Falsafi, Hill, Marculescu, Nagle, Patterson, Roth, Rutenbar,Schmidt, Shen, Sohi, Sorin, Thottethodi, Vijaykumar, & Wood

What is Computer Architecture?

- "Computer Architecture is the science and art of selecting and interconnecting hardware components to create computers that meet functional, performance and cost goals."
 - WWW Computer Architecture Page
- An analogy to architecture of buildings...

Role of Building Architect

Role of Computer Architect

CS/ECE 552 in Context

- CS/ECE 352 Gates to multiplexors & FSMs
- CS/ECE 354 High-level language to machine language, a.k.a. Instruction Set Architecture (ISA)
- This course CS/ECE 552 puts it all together
 - Implement that logic that provides ISA
 - Must do datapath & control, but no magic!
 - Manage complexity through ABSTRACTION
- Follow-on courses explore trade-offs:752 & 757

Why Study Computer Design

- To design new computers: old designs become obsolete fast
 - new technologies e.g., denser ICs (technology "push")
 - new user demand e.g., virtual reality (application "pull")
- To be an informed user
 - a little auto mechanics helps owner rarely, but importantly
- To learn to deal with complexity via abstraction
 - problems that take months and years to complete

Abstraction

- Black boxes
- Difference between interface and implementation
 - Interface WHAT something does
 - Implementation HOW it does so

Abstraction - Example

- 2-to-1 Mux
- Interface:

• Implementations

- gates (fast or slow), pass transistors

What's the Big Deal?

- E.g., x86 interface book
- Worse for computers, in general a tower of abstraction
 - Application software
 - System software (OS and compiler/assembler/linker)
 - Hardware (CPU, memory, I/O)
- Each interface is complex and implemented with layer below
 - Abstraction keeps unnecessary details hidden
- Thousands of engineers to build one product

Basic Division of Hardware

- In space and time
 - In space

Basic Division of Hardware

- In time
 - Fetch the instruction from memory add r1, r2, r3
 - Decode the instruction what does this mean?
 - Read input operands
 - Perform operation
 - Write results
 - Determine next instruction

ean? read r2, r3 add write to r1 pc := pc + 4

Why don't old designs work?

Evolutionary and revolutionary changes in technology

Date	What	Comments
1947	1 st transistor	Bell Labs
1958	1 st integrated circuit	Texas Instruments
1971	1 st microprocessor Intel 4004	2300 transistors, 108 kHz
1978	Intel 8086	29K Transistors
1989	Intel 80486	1.2M Transistors
1995	Intel Pentium Pro	5.5M Transistors
2003	Intel Pentium4	55M Transistors

Moore's Law(s)

- Technologists will double # transistors per chip doubles every two years (or 18 months)
- Or architects will double performance per chip doubles every two years (or 18 months)
- These can't go on forever, but don't underestimate a trillion dollar industry

(13)

First Microprocessor

- Intel 4004 [1971]
 - 4-bit data
 - 2300 transistors
 - -10 mm PMOS
 - 108 KHz (.0001 GHz)
 - –12 V
 - 13 mm²

Some Older Chips!

Intel Pentium IV

- 42 million transistors
- 3.8 GHz
- 0.13µm process
- Could fit ~15,000 4004s on this chip!

2x12MB L3 caches

IBM Cell

- 8 vector processors + 1 PPC
- 4 GHz
- 90nm process

Intel Itanium II (Montecito)

- 1.7 billion transistors
- ?? MHz
- 90nm process

Intel Ivy Bridge

3rd Generation Intel® Core™ Processor: 22nm Process

New architecture with shared cache delivering more performance and energy efficiency

GPUs: AMD Radeon 4870

GPUs: Nvidia GTX 280

A6 Chip

CS/ECE 552 (Sankaralingam)

Bottom line

- Designers must know BOTH software and hardware
- Compilers, Operating Systems, Networks
- Both contribute to layers of abstraction of computers
- IC costs and performance
- Read the book Chapter 1 done -
- Throughout the course, read the book (BEFORE lecture)
- Optional reading:
 - Soul of a New Machine, Trace Kidder

Syllabus

- Language of the computer: ISA
- Arithmetic
- Processor Design
- Performance
- Memory
- IO
- Multiprocessors, Advanced processors, GPUs

We will meet in 1221 CS henceforth