
U. Wisconsin CS/ECE 552
Introduction to Computer Architecture

Prof. Karu Sankaralingam

Instructions (Chapter 2)

www.cs.wisc.edu/~karu/courses/cs552/

Slides combined and enhanced by Karu Sankaralingam from
work by Falsafi, Hill, Marculescu, Nagle, Patterson, Roth,

Rutenbar,Schmidt, Shen, Sohi, Sorin, Thottethodi,
Vijaykumar, & Wood

http://www.cs.wisc.edu/~markhill/cs552/Fall2006/

CS/ECE 552

Instruction Set Architecture (ISA)

• The “contract” between software and hardware

• Functional definition of operations, modes, and storage locations

supported by hardware

• Precise description of how software can invoke and access them

• Strictly speaking, ISA is the architecture

• Informally, architecture is also used to talk about the big picture of

implementation

• Better to call this micro-architecture

Sankaralingam(2)

CS/ECE 552 Sankaralingam(3)

Microarchitecture

• ISA specifies what hardware does, not how it does it

• No guarantees regarding

• How operations are implemented

• Which operations are fast and which are slow

• Which operations take more power and which take less

• These issues are determined by the microarchitecture

• Microarchitecture = how hardware implements architecture

• All Pentiums implement the x86 architecture

CS/ECE 552 Sankaralingam(4)

Aspects of ISAs

1. The Von Neumann model

• Implicit structure of all modern ISAs

2. Format

• Length and encoding

3. Operations

4. Operand model

• Where are operands stored and how do address them?

5. Datatypes and operations

6. Control

• Running example: MIPS

• Your project will use 16-bit MIPS-lite

• Touch on x86

CS/ECE 552 Sankaralingam(5)

(1) The Sequential (Von Neumann) Model

• Implicit model of all modern ISAs

•

• Key: program counter (PC)

• Defines total order of dynamic instructions

• Next PC is PC++ unless insn says otherwise

• Order and named storage define computation

• Value flows from insn X to Y via storage A iff…

• X names A as output, Y names A as input…

• And Y after X in total order

• Processor logically executes loop at left

• Instruction execution assumed atomic

• Instruction X finishes before insn X+1 starts

Fetch PC

Decode

Read Inputs

Execute

Write Output

Next PC

CS/ECE 552 Sankaralingam(6)

(2) Instruction Format

• Length

1. Fixed length

• 32 or 64 bits (your project: 16 bit ISA)

+ Simple implementation: compute next PC using only PC

– Code density

2. Variable length

– Complex implementation

+ Code density

3. Compromise: two lengths

• Example: MIPS16

• Encoding

• A few simple encodings simplify decoder implementation

• Complex encoding can improve code density

CS/ECE 552 Sankaralingam(7)

MIPS Format

• Length

• 32-bits

• MIPS16: 16-bit variants of common instructions for density

• Encoding

• 3 formats, simple encoding

• Q: how many operation types can be encoded in 6-bit opcode?

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5) Rd(5)Rd(5) Sh(5)Sh(5) Func(6)Func(6)RR--typetype

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5) Immed(16)Immed(16)II--typetype

Op(6)Op(6) Target(26)Target(26)JJ--typetype

Sankaralingam(8)

opcode rs rt rd shamt funct

6 5 5 5 5 6

• E.g., add $1, $2, $3

000000 00010 00011 00001 00000 100000

alu-rr 2 3 1 zero add/signed

How do you store the number 4,392,992?

.

R Format

Sankaralingam(9)

I Format

• All loads and stores use I-format

• Assembly: lw $1, 100($2)

• Machine:

100011 00010 00001 0000000001100100
lw 2 1 100 (in binary)

opcode rs rt addr/immediate

6 5 5 16

Sankaralingam(10)

I Format, cont.

• ALU ops with immediates

– addi $1, $2, 100

– 001000 00010 00001 0000000001100100

• Conditional branches

– beq $1, $2, 7

– 000100 00001 00010 0000 0000 0000 0111

– PC = PC + (0000 0111 << 2) // word offset

Sankaralingam(11)

J Format

Weird Direct Jump:

opcode addr

6 26

• Jump to:

–New PC = 4 MSB of PC || addr || 00

–4+26+2 = 32 bits for jump target

CS/ECE 552 Sankaralingam(12)

(3) Operations

• Operation type encoded in instruction opcode

• Many types of operations

• Integer arithmetic: add, sub, mul, div, mod/rem (signed/unsigned)

• FP arithmetic: add, sub, mul, div, sqrt

• Integer logical: and, or, xor, not, sll, srl, sra

• Packed integer: padd, pmul, pand, por… (saturating/wraparound)

• What other operations might be useful?

• More operation types == better ISA??

• DEC VAX computer had LOTS of operation types

• E.g., instruction for polynomial evaluation (no joke!)

• But many of them were rarely/never used

CS/ECE 552 Sankaralingam(13)

(4) Operations Act on Operands

• If you’re going to add, you need at least 3 operands

• Two source operands, one destination operand

• Question #1: Where can operands come from?

• Question #2: And how are they specified?

• Running example: A = B + C

• Several options for answering both questions

• Discuss: Memory-Only & Registers

• Optional: Accumulator & Stack

CS/ECE 552 Sankaralingam(14)

Operand Model I: Memory Only

• Memory only

add A,B,C mem[A] = mem[B] + mem[C]

MEMMEM

CS/ECE 552 Sankaralingam(15)

Operand Model II: Accumulator

• Accumulator: implicit single-element stack

load B ACC = mem[B]

add C ACC = ACC + mem[C]

store A mem[A] = ACC

MEMMEM

ACCACC

CS/ECE 552 Sankaralingam(16)

Operand Model III: Stack

• Stack: top of stack (TOS) is implicit in instructions

push B stack[TOS++] = mem[B]

push C stack[TOS++] = mem[C]

add stack[TOS++] = stack[--TOS] + stack[--TOS]

pop A mem[A] = stack[--TOS]

MEMMEM

TOSTOS

CS/ECE 552 Sankaralingam(17)

Operand Model: Registers

• General-purpose registers: multiple explicit accumulators

load R1,B R1 = mem[B]

add R1, C R1 = R1 + mem[C]

store R1,A mem[A] = R1

• Load-store: GPR and only loads/stores access memory

load R1,B R1 = mem[B]

load R2,C R2 = mem[C]

add R1,R1,R2 R1 = R1 + R2

store R1,A mem[A] = R1

MEMMEM

CS/ECE 552 Sankaralingam(18)

Operand Model Pros and Cons

• Metric I: static code size

• Number of instructions needed to represent program, size of each

• Evaluation: register < load-store < memory only

• Metric II: data memory traffic

• Number of bytes moved to and from memory

• Evaluation: load-store < register < memory only

• Metric III: instruction latency

• Want low latency to execute instructions

• Evaluation: load-store < register < memory only

• Upshot: most current ISAs are load-store

CS/ECE 552 Sankaralingam(19)

MIPS Operand Model

• MIPS is load-store

• 32 32-bit integer registers

• Actually 31: r0 is hardwired to value 0  why?

• 32 32-bit FP registers

• Can also be treated as 16 64-bit FP registers

• HI,LO: destination registers for multiply/divide

• Integer register conventions

• Allows separate function-level compilation and fast function calls

CS/ECE 552 Sankaralingam(20)

Memory Addressing

• ISAs assume “virtual” address size

• Either 32 or 64 bits

• Program can name 232 bytes (4GB) or 264 bytes (16PB)

• ISA point? no room for even one address in a 32-bit instruction

• Addressing mode: way of specifying address

• Direct: ld R1,(R2) R1=mem[R2]

• Displacement: ld R1,8(R2) R1=mem[R2+8]

• Indexed: ld R1,(R2,R3) R1=mem[R2+R3]

• Memory-indirect: ld R1,@(R2) R1=mem[mem[R2]]

• Auto-update: ld R1,8(R2) R2+=8; R1=mem[R2]

• Scaled: ld R1,(R2,R3,32,8) R1=mem[R2+R3*32+8]

• What high-level program idioms are these used for?

CS/ECE 552 Sankaralingam(21)

MIPS Addressing Modes

• MIPS implements only displacement

• Why? Experiment on VAX (ISA with every mode) found distribution

• Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%

• 80% use displacement or register indirect (=displacement 0)

• I-type instructions: 16-bit displacement

• Is 16-bits enough?

• Yes! VAX experiment showed 1% accesses use displacement >16

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5) Immed(16)Immed(16)II--typetype

CS/ECE 552 Sankaralingam(22)

msb lsb

3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0

Addressing Issue: Endian-ness

Byte Order

• Big Endian: byte 0 is 8 most significant bits IBM 360/370,

Motorola 68k, MIPS, SPARC, HP PA-RISC

• Little Endian: byte 0 is 8 least significant bits Intel 80x86, DEC

Vax, DEC/Compaq Alpha

CS/ECE 552 Sankaralingam(23)

• Alignment: require that objects fall on address that

is multiple of their size

• 32-bit integer

• Aligned if address % 4 = 0 [% is symbol for “mod”]

• Aligned: lw @XXXX00

• Not: lw @XXXX10

• 64-bit integer?

• Aligned if ?

• Question: what to do with unaligned accesses

(uncommon case)?

• Support in hardware? Makes all accesses slow

• Trap to software routine? Possibility

• MIPS? ISA support: unaligned access using two

instructions:
lw @XXXX10 = lwl @XXXX10; lwr @XXXX10

0 1 2 3

Aligned

Not

Another Addressing Issue: Alignment

Byte #

CS/ECE 552 Sankaralingam(24)

(5) Datatypes

• Datatypes

• Software view: property of data

• Hardware view: data is just bits, property of operations

• Hardware datatypes

• Integer: 8 bits (byte), 16b (half), 32b (word), 64b (long)

• IEEE754 FP: 32b (single-precision), 64b (double-precision)

• Packed integer: treat 64b int as 8 8b int’s or 4 16b int’s

CS/ECE 552 Sankaralingam(25)

MIPS Datatypes (and Operations)

• Datatypes: all the basic ones (byte, half, word, FP)
• All integer operations read/write 32-bits

• No partial dependences on registers

• Only byte/half variants are load-store

lb, lbu, lh, lhu, sb, sh

• Loads sign-extend (or not) byte/half into 32-bits

• Operations: all the basic ones
• Signed/unsigned variants for integer arithmetic

• Immediate variants for all instructions

add, addu, addi, addiu

• Regularity/orthogonality: all variants available for all operations

• Makes compiler’s “life” easier

CS/ECE 552

(6) Control Instructions I

• One issue: testing for conditions

• Option I: compare and branch instructions

blti $1,10,target

+ Simple, – two ALUs: one for condition, one for target address

• Option II: implicit condition codes

subi $2,$1,10 // sets “negative” CC

bn target

+ Condition codes set “for free”, – implicit dependence is tricky

• Option III: condition registers, separate branch insns

slti $2,$1,10

bnez $2,target

– Additional instructions, + one ALU per, + explicit dependence

Sankaralingam(26)

CS/ECE 552 Sankaralingam(27)

MIPS Conditional Branches

• MIPS uses combination of options II and III

• Compare 2 registers and branch: beq, bne

• Equality and inequality only

+ Don’t need an adder for comparison

• Compare 1 register to zero and branch: bgtz, bgez, bltz, blez

• Greater/less than comparisons

+ Don’t need adder for comparison

• Set explicit condition registers: slt, sltu, slti, sltiu, etc.

• Why? 86% of branches in programs are (in)equalities or

comparisons to 0

CS/ECE 552 Sankaralingam(28)

Control Instructions II

• Another issue: computing targets
• Option I: PC-relative

• Position-independent within procedure

• Used for branches and jumps within a procedure

• Option II: Absolute

• Position independent outside procedure

• Used for procedure calls

• Option III: Indirect (target found in register)

• Needed for jumping to dynamic targets

• Used for returns, dynamic procedure calls, switches

• How far do you need to jump?

• Typically not so far within a procedure (they don’t get that big)

• Further from one procedure to another

CS/ECE 552

MIPS Control Instructions

• MIPS uses all three

• PC-relative  conditional branches: bne, beq, blez, etc.

• 16-bit relative offset, <0.1% branches need more

• PC = PC + 4 + immediate if condition is true (else PC=PC+4)

• Absolute  unconditional jumps: j target

• 26-bit offset (can address 228 words < 232
 what gives?)

• Indirect  Indirect jumps: jr $rd

Sankaralingam(29)

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5) Immed(16)Immed(16)II--typetype

Op(6)Op(6) Target(26)Target(26)JJ--typetype

Op(6)Op(6) Rs(5)Rs(5) Rt(5)Rt(5) Rd(5)Rd(5) Sh(5)Sh(5) Func(6)Func(6)RR--typetype

CS/ECE 552 Sankaralingam(30)

Control Instructions III

• Another issue: support for procedure calls?

• We “link” (remember) address of the calling instruction + 4 (current

PC + 4) so we can return to it after the procedure

• MIPS

• Implicit return address register is $ra(=$31)

• Direct jump-and-link: jal address

 $ra = PC+4; PC = address

• Can then return from call with: jr $ra

• Or can call with indirect jump-and-link: jalr $rd, $rs

 $rd = PC+4; PC = $rs // explicit return address register

• Then return with: jr $rd

CS/ECE 552 Sankaralingam(31)

Control Idiom: If-Then-Else

• Understanding programs helps with architecture
• Know what common programming idioms look like in assembly

• Why? How can you MCCF if you don’t know what CC is?

• First control idiom: if-then-else
if (A < B) A++; // A in $s1

else B++; // B in $s2

slt $s3,$s1,$s2 // if $s1<$s2, then $s3=1

beqz $s3,else // branch to else if !condition

addi $s1,$s1,1

j join // jump to join

else: addi $s2,$s2,1

join:

CS/ECE 552 Sankaralingam(32)

Control Idiom: Arithmetic For Loop

• Second idiom: for loop with arithmetic induction

int A[100], sum, i, N;

for (i=0; i<N; i++){ // assume: i in $s1, N in $s2

sum += A[i]; // &A[i] in $s3, sum in $s4

}

sub $s1,$s1,$s1 // initialize i to 0

loop: slt $t1,$s1,$s2 // if i<N, then $t1=1

beqz $t1,exit // test for exit at loop header

lw $t1,0($s3) // $t1 = A[i] (not &A[i])

add $s4,$s4,$t1 // sum = sum + A[i]

addi $s3,$s3,4 // increment &A[i] by sizeof(int)

addi $s1,$s1,1 // i++

j loop // backward jump

exit:

CS/ECE 552 Sankaralingam(41)

Outline

• Instruction Sets in General

• MIPS Assembly Programming

• Other Instruction Sets

• Goals of ISA Design

• RISC vs. CISC

• Intel x86 (IA-32)

CS/ECE 552

RISC vs. CISC

• RISC: reduced-instruction set computer

• Coined by P+H in early 80’s

• CISC: complex-instruction set computer

• Not coined by anyone, term didn’t exist before “RISC”

• Religious war (one of several) started in mid 1980’s

• RISC (MIPS, Alpha) “won” the technology battles

• CISC (IA32 = x86) “won” the commercial war

• Compatibility a stronger force than anyone (but Intel) thought

• Intel beat RISC at its own game … more on this soon

Sankaralingam(42)

CS/ECE 552

Intel 80x86 ISA (aka x86 or IA-32 now)

• Long history

• Binary compatibility across generations

• 1978: 8086, 16-bit, registers have dedicated uses

• 1980: 8087, added floating point (stack)

• 1982: 80286, 24-bit

• 1985: 80386, 32-bit, new instrs  GPR almost

• 1989-95: 80486, Pentium, Pentium II

• 1997: Added MMX instructions (for graphics)

• 1999: Pentium III

• 2002: Pentium 4

• 2004: “Nocona” 64-bit extension (to keep up with AMD)

Sankaralingam(43)

CS/ECE 552

Intel x86: The Penultimate CISC (VAX ultimate)

• Variable length instructions: 1-16 bytes

• Few registers: 8 and each one has a special purpose

• Multiple register sizes: 8,16,32 bit (for backward compatibility)

• Accumulators for integer instrs, and stack for FP instrs

• Multiple addressing modes: indirect, scaled, displacement

• Register-register, memory-register, and memory-register insns

• Condition codes

• Instructions for memory stack management (push, pop)

• Instructions for manipulating strings (entire loop in one instruction)

• Summary: yuck!

Sankaralingam(44)

CS/ECE 552

80x86 Registers and Addressing Modes

• Eight 32-bit registers (not truly general purpose)

• EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

• Six 16-bit Registers for code, stack, & data

• 2-address ISA

• One operand is both source and destination

• NOT a Load/Store ISA

• One operand can be in memory

Sankaralingam(45)

CS/ECE 552

80x86 Addressing Modes

• Register Indirect
• mem[reg]

• not ESP or EBP

• Base + displacement (8 or 32 bit)
• mem[reg + const]

• not ESP or EBP

• Base + scaled index
• mem[reg + (2scale x index)]

• scale = 0,1,2,3

• base any GPR, index not ESP

• Base + scaled index + displacement
• mem[reg + (2scale x index) + displacement]

• scale = 0,1,2,3

• base any GPR, index not ESP

Sankaralingam(46)

CS/ECE 552

Condition Codes

• x86 ISA has condition codes

• Special HW register that has values set as side effect of

instruction execution

• Example conditions

• Zero

• Negative

• Example use

subi $t0, $t0, 1

bz loop

Sankaralingam(47)

CS/ECE 552

80x86 Instruction Encoding

• Variable size 1-byte to 17-bytes

• Jump (JE) 2-bytes

• Push 1-byte

• Add Immediate 5-bytes

• W bit says 32-bits or 8-bits

• D bit indicates direction

• memory  reg or reg  memory

• movw EBX, [EDI + 45]

• movw [EDI + 45], EBX

Sankaralingam(48)

CS/ECE 552

Decoding x86 Instructions

• Is a nightmare!

• Instruction length is variable from 1 to 17 bytes!

• Prefixes, postfixes

• Crazy “formats”  register specifiers move around

• But key instructions not terrible

• Yet, everything must work correctly

Sankaralingam(49)

CS/ECE 552

How x86 Won Anyway

• X86 won because it was the first 16-bit chip by 2 years

• IBM put it into its PCs because no competing choice

• Software written to x86 so x86 is the standard

• Hard to complete with Intel

• X86 is difficult ISA to implement

• Intel can amortize design effort over vast sales

• Intel uses RISC “underneath”

• Moore’s law has helped in a big way

• Most engineering problems can be solved with more transistors

Sankaralingam(50)

