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Performance of Computers

e Which computer is fastest?
¢ Not so simple
- Scientific simulation - FP performance

- Authoring programs - Integer
performance

- Commercial work - I/O & vast memory
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Performance of Computers

e Want
- Highest Performance (modeling oil fields)
- Lowest Cost (doorknob)
- Lowest Cost/Performance (most common)

e Performance will depend on workload

e Computers not completely interchangable
- PC cannot (currently) have 128 GB memory
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Outline

e Time and performance

e Iron law

e Metrics: MIPS and MFLOPS

e Which programs and how to average
e Amdahl’s law
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http://www.cs.wisc.edu/~karu/courses/cs552/

Defining Performance

e What is important to who?
1. Computer system user

- minimize elapsed time for program = time_end
- time_start

- called response time

2. Computer center manager
- maximize completion rate = #jobs/second
- called throughput
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Response Time vs. Throughput

e Is throughput = 1/av. response time?
- only if NO overlap
- with overlap, throughput > 1/av.response time
e e.g., a lunch buffet - assume 5 entrees
— each person takes 2 minutes at every entree
e throughput is 1 person every 2 minutes (1/2)
e BUT time to fill up tray is 10 minutes

- otherwise, why and what would the throughput
be?
e because there are 5 people (each at 1 entree)
simultaneously;

e if there is no such overlap throughput = 1/10
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What is Performance for us?

e For computer architects
- CPU execution time = time spent running a
program

e Because people like faster to be bigger to match
intuition

- performance = 1/X time
- where X = response, CPU execution, etc.
e Elapsed time = CPU execution time + I/O wait

e We will concentrate mostly on CPU execution
time
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Improve Performance

e Improve (a) response time or (b)
throughput?
- faster CPU
e both (a) and (b)
- Add more CPUs

¢ (b) but (a) may be improved due to less
queueing
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Performance Comparison

e Machine A is n times faster than machine B iff
- perf(A)/perf(B) = time(B)/time(A) = n

e Machine A is x% faster than machine B iff
- perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

e E.g., A10s, B 15s
-15/10 = 1.5 => Ais 1.5 times faster than B

-15/10 =1 + 50/100 => A is 50% faster than
B
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Breaking Down Performance

e A program is broken into instructions
- H/W is aware of instructions, not programs

e At lower level, H/W breaks instructions into
cycles

- lower level state machines change state every
cycle

e E.g., 4 GHz Pentium 4
- runs 4 B cycles/sec
-1 cycle = 0.25 ns = 250 ps
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Iron law

e Time/program = .
instrs/program x cycles/instr x sec/cycle

e sec/cycle (a.k.a. cycle time, clock time) -
‘heartbeat’ of computer

- mostly determined by technology and CPU
organization

e cycles/instr (a.k.a. CPI)

- mostly determined by ISA and CPU
organization

- overlap among instructions makes this smaller
e instr/program (a.k.a. instruction count)

- instrs executed NOT static code

- mostly determined by program, compiler, ISA
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Our Goal

¢ Minimize time which is the product,
NOT isolated terms
e Common error to miss terms while
devising optimizations
-E.g., ISA change to decrease instruction
count

- BUT leads to CPU organization which
makes clock slower
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Iron Law Example

e Machine A: clock 1 ns, CPI 2.0, for a program

¢ Machine B: clock 2 ns, CPI 1.2, for same program

e Thus, Machine A is 1 GHz while B is lowly 500
MHz

e Which is faster and by how much?

e Time/program =
instrs/program x cycles/instr x sec/cycle
- Time(A): Nx 2.0x 1 = 2N
-Time(B): N x 1.2 x 2 = 2.4N

e Compare: Time(B)/Time(A) = 2.4N/2N = 1.2
e On this program, Machine A is 20% faster than B
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Iron Law Example

e Keep clock of A at 1 ns and clock of B at 2
ns

e For equal performance, if CPI of B is 1.2,
what is A’s CPI?
-Time(B)/Time(A) =1 = (Nx2x1.2)/(N
x 1 x CPI(A))
-CPI(A) = 2.4
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Iron Law Example

e Keep CPI of A 2.0 and CPI of B 1.2

e For equal performance, if clock of B is 2
ns, what is A’s clock?
-Time(B)/Time(A) =1 = (N x 2.0 X

clock(A))/(N x 1.2 x 2)
-clock(A) = 1.2 ns
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Beware of Millions of Instr / Sec

e MIPS = instruction count/(execution time x 106)
= clock rate/(CPI x 106) (How?)
e Often ignores program & quotes “peak”
- ideal conditions => guarantee not to exceed!!
e Ignores instruction/program changes
* E.g., adding floating-point H/W can hurt MIPS
* 50 simple instructions replace by one slow FP op
e Okay if
e instrs/program constant (e.g. same executable)
e real program; not peak
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Beware of Millions of FP Ops / Sec

e MFLOPS =
06)FP ops in program/(execution time x
1

e Assumes FP ops independent of
compiler/ISA
—Assumption not true
—-may not have divide instruction in ISA
- optimizing compilers can remove

¢ Relative MIPS and normalized MFLOPS
—adds to confusion! (see book)
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Rules

e Use ONLY Time

- Beware when reading, especially if
details are omitted

- Beware of Peak
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Which Programs?

e Execution time of what?

e Best case - you always run the same set of
programs
- port them and time the whole “workload”
¢ In reality, use benchmarks
- programs chosen to measure performance
- predict performance of actual workload
(hopefully)
- saves effort and money
- representative? honest?

- Example Suites: EEMBC, MediaBench, SPEC,
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Benchmarks: SPEC CPU2000

e SPEC: System Performance Evaluation
Cooperative

e Latest is SPEC2K, before SPEC89, SPEC92,
SPEC95

e 12 integer and 14 floating point programs

- GM of the normalized times
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SPEC CPU2000 Integer

SPEC CPU2000 Floating Point

Benchmark Description —
azip Compression Benchmark Description
vpr FPGA place/route wupwise Quantum chomodynamics
gcc 6NU C compiler swim Shallow water model
mcf Combinatorial optimizer mgrid Multigrid solver of 3D grid
crafty Chess applu Parabolic/elliptic PDEs
parser Word processing mesa 3D graphics library
eon Visualization galgel, art, equake, Remaining 9 FP applications
— facerec, ammp, lucas,
perlbmk Perl application fma3d, sixtrack, apsi
gap Group theory
vortex Object-oriented database
bzip2 Compression
twolf Place/route simulator
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SPECfp95 How to Average
e Example
Benchmark Descrip‘rion Machine A (sec) | Machine B (sec)
su2cor Monte Carlo Program 1 1 10
mgrid 3-D potential field 5 5 1000 100
waveb EM particle simulation rogram
hydro2d Navier Stokes Equations Total 1001 110
¢ One answer: total execution time
e Then B is how much faster than A? 9.1
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How to Average

e Another: arithmetic mean (same result: B 9.1 times
faster than A )

¢ Arithmetic mean of timesy Z ne r n forn
programs = J

« AM(A) = 1001/2 = 500.5
e AM(B) = 110/2 = 55
e 500.5/55 = 9.1

e Valid only if programs run equally often, else use
“weight” factors

e Weighted arithmetic mean: ﬁz Zight,. x ime r n
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Other Averages

E.g., 30 mph for first 10 miles
90 mph for next 10 miles. Average speed?

e Average speed = (30+90)/2 =60mph? WRONG
e Average speed = total distance / total time

= (20/ (10/30+10/90))

= 45 mph

e What if it was 10 hours at each speed?
- instead of 10 miles
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Harmonic Mean
1

e Harmonic mean of rates = ( 1
ﬁLE ‘e JF
= ute,

/n
- Use HM if forced to start and end with rates

e Trick to do arithmetic mean of times
but using rates and not times
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Dealing with Ratios

+ Absolute execution times (sec)

Machine A Machine B
Program 1 1 10
Program 2 1000 100

+ Now consider ratios (w.r.t. A)

Machine A Machine B
Program 1 1 10
Program 2 1 0.1

+ Averages: A=1,B=505

CS/ECE 552 (28) Sankaralingam




Dealing with Ratios

+ Absolute execution times (sec)

Machine A Machine B
Program 1 1 10
Program 2 1000 100
+ Now consider ratios (w.r.t. B)
Machine A Machine B
Program 1 0.1 1
Program 2 10 1

- Averages: A = 5.05, B = 1 Both cannot be true!
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Geometric Mean

Don’t use arithmetic mean on ratios (normalized numbers)
Use geometric mean for ratios
- geometric mean of ratios =

- Use GM if forced to use ratios q/l_l ‘o
i=1

Independent of reference machine (math property)

In the example, GM for machine A is 1, for machine B is
also 1

Normalized with respect to either machine
Used in SPECint and SPECfp
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But..

e Geometric mean of ratios is not proportional to

total time

e AM in example says machine B is 9.1 times faster
e GM says they are equal
o If we took total execution time, A and B are equal

only if

- program 1 is run 100 times more often than

program 2

e Generally, GM will mispredict for three or more

machines
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Summary for Averages

e Use AM for times
e Use HM if forced to use rates
¢ Use GM if forced to use ratios
e Better yet
—-Use unnormalized numbers to compute
time
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Amdahl’s Law

e Why does the common case matter the most?
e Let an optimization speed f fraction of time by a factor of s
e assuming that old time = T, what is the speedup?

- fis the “affected” fraction of T

- (1-f) is the unaffected fraction

Amdahl’s Law Example

e Your boss asks you to
improve processor
performance

e Two options: What should 95% |1.10 |1.094
you do?

f s Speedup

« Speedup = - improve the ALU used |5% |10 |1047
- ") i [V
time,,  unaffected,, + iffected,, _95 % of tlr:e’ by 10% 5% |e |1052
® = time,, unaffected,, + tffected,,, - |mprov§_‘ the square-
root unit used 5%, by
(1= 9% "+ x a factor of 10
..
(1= 9% "+ -x
S
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Amdahl’s Law: Limit Amdahl’s Law
e Make common case 10 e “"Make common case fast”
fast because: / - Heuristic, not commandment
8 / - Use for intuition, verify with numbers
( 1 Y1 6 * 60% can be improved by a factor of 2

Speedup
»
N

hm'\l— “+ f/s)I -

s>
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- Speedup = 1/(0.4+0.6/2) = 1/0.7
* 40% can be improved by a factor of 8

- Speedup = 1/(0.6+0.4/8) = 1/0.65
e Second option is better

- Less common case, but higher speedup
compensates
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Summary

e Time and performance:
- Machine A n times faster than Machine B
— iff Time(B)/Time(A) = n
e Iron Law: Time/prog
- Instr count x CPI x Cycle time
e Other Metrics: MIPS and MFLOPS
- Beware of peak and omitted details
e Benchmarks: SPEC95
e Summarize performance:
- AM for time, HM for rate, GM for ratio

(1 )
e Amdahl’s Law: Speedup = | ————1 common case
fast U=s+1/s)
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