
1

U. Wisconsin CS/ECE 552
Introduction to Computer Architecture

Prof. Karu Sankaralingam

Performance (Chapter 4)

www.cs.wisc.edu/~karu/courses/cs552/

Slides combined and enhanced by Karu Sankaralingam from
work by Falsafi, Hill, Marculescu, Nagle, Patterson, Roth,

Rutenbar,Schmidt, Shen, Sohi, Sorin, Thottethodi,
Vijaykumar, & Wood

SankaralingamCS/ECE 552 (2)

Performance of Computers

• Which computer is fastest?

• Not so simple

–Scientific simulation - FP performance

–Authoring programs - Integer
performance

–Commercial work - I/O & vast memory

SankaralingamCS/ECE 552 (3)

Performance of Computers

• Want

– Highest Performance (modeling oil fields)

– Lowest Cost (doorknob)

– Lowest Cost/Performance (most common)

• Performance will depend on workload

• Computers not completely interchangable

– PC cannot (currently) have 128 GB memory

SankaralingamCS/ECE 552 (4)

Outline

• Time and performance

• Iron law

• Metrics: MIPS and MFLOPS

• Which programs and how to average

• Amdahl‟s law

http://www.cs.wisc.edu/~karu/courses/cs552/

2

SankaralingamCS/ECE 552 (5)

Defining Performance

• What is important to who?

1. Computer system user

– minimize elapsed time for program = time_end
- time_start

– called response time

2. Computer center manager

– maximize completion rate = #jobs/second

– called throughput

SankaralingamCS/ECE 552 (6)

Response Time vs. Throughput

• Is throughput = 1/av. response time?

– only if NO overlap

– with overlap, throughput > 1/av.response time

• e.g., a lunch buffet - assume 5 entrees

– each person takes 2 minutes at every entree
• throughput is 1 person every 2 minutes (1/2)

• BUT time to fill up tray is 10 minutes

– otherwise, why and what would the throughput
be?
• because there are 5 people (each at 1 entree)

simultaneously;

• if there is no such overlap throughput = 1/10

SankaralingamCS/ECE 552 (7)

What is Performance for us?

• For computer architects

– CPU execution time = time spent running a
program

• Because people like faster to be bigger to match
intuition

– performance = 1/X time

– where X = response, CPU execution, etc.

• Elapsed time = CPU execution time + I/O wait

• We will concentrate mostly on CPU execution
time

SankaralingamCS/ECE 552 (8)

Improve Performance

• Improve (a) response time or (b)
throughput?

– faster CPU

• both (a) and (b)

–Add more CPUs

• (b) but (a) may be improved due to less
queueing

3

SankaralingamCS/ECE 552 (9)

Performance Comparison

• Machine A is n times faster than machine B iff

– perf(A)/perf(B) = time(B)/time(A) = n

• Machine A is x% faster than machine B iff

– perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

• E.g., A 10s, B 15s

– 15/10 = 1.5 => A is 1.5 times faster than B

– 15/10 = 1 + 50/100 => A is 50% faster than
B

SankaralingamCS/ECE 552 (10)

Breaking Down Performance

• A program is broken into instructions

– H/W is aware of instructions, not programs

• At lower level, H/W breaks instructions into
cycles

– lower level state machines change state every
cycle

• E.g., 4 GHz Pentium 4

– runs 4 B cycles/sec

– 1 cycle = 0.25 ns = 250 ps

SankaralingamCS/ECE 552 (11)

Iron law

• Time/program =
instrs/program x cycles/instr x sec/cycle

• sec/cycle (a.k.a. cycle time, clock time) -
„heartbeat‟ of computer
– mostly determined by technology and CPU

organization
• cycles/instr (a.k.a. CPI)

– mostly determined by ISA and CPU
organization

– overlap among instructions makes this smaller
• instr/program (a.k.a. instruction count)

– instrs executed NOT static code
– mostly determined by program, compiler, ISA

SankaralingamCS/ECE 552 (12)

Our Goal

• Minimize time which is the product,
NOT isolated terms

• Common error to miss terms while
devising optimizations

–E.g., ISA change to decrease instruction
count

–BUT leads to CPU organization which
makes clock slower

4

SankaralingamCS/ECE 552 (13)

Iron Law Example

• Machine A: clock 1 ns, CPI 2.0, for a program
• Machine B: clock 2 ns, CPI 1.2, for same program
• Thus, Machine A is 1 GHz while B is lowly 500

MHz

• Which is faster and by how much?
• Time/program =

instrs/program x cycles/instr x sec/cycle
– Time(A): N x 2.0 x 1 = 2N
– Time(B): N x 1.2 x 2 = 2.4N

• Compare: Time(B)/Time(A) = 2.4N/2N = 1.2
• On this program, Machine A is 20% faster than B

SankaralingamCS/ECE 552 (14)

Iron Law Example

• Keep clock of A at 1 ns and clock of B at 2
ns

• For equal performance, if CPI of B is 1.2,
what is A‟s CPI?

–Time(B)/Time(A) = 1 = (N x 2 x 1.2)/(N
x 1 x CPI(A))

–CPI(A) = 2.4

SankaralingamCS/ECE 552 (15)

Iron Law Example

• Keep CPI of A 2.0 and CPI of B 1.2

• For equal performance, if clock of B is 2
ns, what is A‟s clock?

–Time(B)/Time(A) = 1 = (N x 2.0 x
clock(A))/(N x 1.2 x 2)

–clock(A) = 1.2 ns

SankaralingamCS/ECE 552 (16)

Beware of Millions of Instr / Sec

• MIPS = instruction count/(execution time x 106)

= clock rate/(CPI x 106) (How?)

• Often ignores program & quotes “peak”
– ideal conditions => guarantee not to exceed!!

• Ignores instruction/program changes
• E.g., adding floating-point H/W can hurt MIPS

• 50 simple instructions replace by one slow FP op

• Okay if
• instrs/program constant (e.g. same executable)

• real program; not peak

5

SankaralingamCS/ECE 552 (17)

Beware of Millions of FP Ops / Sec

• MFLOPS =
FP ops in program/(execution time x

106)

• Assumes FP ops independent of
compiler/ISA

–Assumption not true

–may not have divide instruction in ISA

–optimizing compilers can remove

• Relative MIPS and normalized MFLOPS

–adds to confusion! (see book)

SankaralingamCS/ECE 552 (18)

Rules

• Use ONLY Time

–Beware when reading, especially if
details are omitted

–Beware of Peak

SankaralingamCS/ECE 552 (19)

Which Programs?

• Execution time of what?

• Best case - you always run the same set of
programs

– port them and time the whole “workload”

• In reality, use benchmarks

– programs chosen to measure performance

– predict performance of actual workload
(hopefully)

– saves effort and money

– representative? honest?

– Example Suites: EEMBC, MediaBench, SPEC,
&TPC SankaralingamCS/ECE 552 (20)

Benchmarks: SPEC CPU2000

• SPEC: System Performance Evaluation
Cooperative

• Latest is SPEC2K, before SPEC89, SPEC92,
SPEC95

• 12 integer and 14 floating point programs

– GM of the normalized times

6

SankaralingamCS/ECE 552 (21)

SPEC CPU2000 Integer
Benchmark Description

gzip Compression

vpr FPGA place/route

gcc GNU C compiler

mcf Combinatorial optimizer

crafty Chess

parser Word processing

eon Visualization

perlbmk Perl application

gap Group theory

vortex Object-oriented database

bzip2 Compression

twolf Place/route simulator

SankaralingamCS/ECE 552 (22)

SPEC CPU2000 Floating Point

Benchmark Description
wupwise Quantum chomodynamics

swim Shallow water model

mgrid Multigrid solver of 3D grid

applu Parabolic/elliptic PDEs

mesa 3D graphics library

galgel, art, equake,
facerec, ammp, lucas,
fma3d, sixtrack, apsi

Remaining 9 FP applications

SankaralingamCS/ECE 552 (23)

SPECfp95

Benchmark Description
su2cor Monte Carlo

mgrid 3-D potential field

wave5 EM particle simulation

hydro2d Navier Stokes Equations

SankaralingamCS/ECE 552 (24)

How to Average

• Example

• One answer: total execution time

• Then B is how much faster than A? 9.1

Machine A (sec) Machine B (sec)

Program 1 1 10

Program 2 1000 100

Total 1001 110

7

SankaralingamCS/ECE 552 (25)

How to Average

• Another: arithmetic mean (same result: B 9.1 times
faster than A)

• Arithmetic mean of times: for n
programs

• AM(A) = 1001/2 = 500.5
• AM(B) = 110/2 = 55
• 500.5/55 = 9.1

• Valid only if programs run equally often, else use
“weight” factors

• Weighted arithmetic mean:

ntime
n

i

i /
1

ntimeweight
n

i

ii /
1

SankaralingamCS/ECE 552 (26)

Other Averages

• E.g., 30 mph for first 10 miles
• 90 mph for next 10 miles. Average speed?

• Average speed = (30+90)/2 =60mph? WRONG

• Average speed = total distance / total time
= (20 / (10/30+10/90))
= 45 mph

• What if it was 10 hours at each speed?
– instead of 10 miles

SankaralingamCS/ECE 552 (27)

Harmonic Mean

• Harmonic mean of rates =

– Use HM if forced to start and end with rates

• Trick to do arithmetic mean of times
but using rates and not times

n
rate

n

i i1

1

1

SankaralingamCS/ECE 552 (28)

Dealing with Ratios

• Absolute execution times (sec)

• Now consider ratios (w.r.t. A)

• Averages: A = 1, B = 5.05

Machine A Machine B

Program 1 1 10

Program 2 1 0.1

Machine A Machine B

Program 1 1 10

Program 2 1000 100

8

SankaralingamCS/ECE 552 (29)

Dealing with Ratios

• Absolute execution times (sec)

• Now consider ratios (w.r.t. B)

• Averages: A = 5.05, B = 1 Both cannot be true!

Machine A Machine B

Program 1 0.1 1

Program 2 10 1

Machine A Machine B

Program 1 1 10

Program 2 1000 100

SankaralingamCS/ECE 552 (30)

Geometric Mean

• Don‟t use arithmetic mean on ratios (normalized numbers)

• Use geometric mean for ratios

– geometric mean of ratios =

– Use GM if forced to use ratios

• Independent of reference machine (math property)

• In the example, GM for machine A is 1, for machine B is
also 1

• Normalized with respect to either machine

• Used in SPECint and SPECfp

n

n

i

iratio
1

SankaralingamCS/ECE 552 (31)

But..

• Geometric mean of ratios is not proportional to
total time

• AM in example says machine B is 9.1 times faster
• GM says they are equal
• If we took total execution time, A and B are equal

only if
– program 1 is run 100 times more often than

program 2
• Generally, GM will mispredict for three or more

machines

SankaralingamCS/ECE 552 (32)

Summary for Averages

• Use AM for times

• Use HM if forced to use rates

• Use GM if forced to use ratios

• Better yet

–Use unnormalized numbers to compute
time

9

SankaralingamCS/ECE 552 (33)

Amdahl‟s Law

• Why does the common case matter the most?

• Let an optimization speed f fraction of time by a factor of s

• assuming that old time = T, what is the speedup?

– f is the “affected” fraction of T

– (1-f) is the unaffected fraction

• Speedup =

• =
newnew

oldold

new

old

affectedunaffected

affectedunaffected

time

time

T
s

f
Tf

TfTf

)1(

)1(

SankaralingamCS/ECE 552 (34)

Amdahl‟s Law Example

• Your boss asks you to
improve processor
performance

• Two options: What should
you do?

– improve the ALU used
95% of time, by 10%

– improve the square-
root unit used 5%, by
a factor of 10

f s Speedup

95% 1.10 1.094

5% 10 1.047

5% ∞ 1.052

SankaralingamCS/ECE 552 (35)

Amdahl‟s Law: Limit

• Make common case
fast because:

fsffs 1

1

1

1
lim

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

f

S
p
e
e
d
u
p

SankaralingamCS/ECE 552 (36)

Amdahl‟s Law

• “Make common case fast”

– Heuristic, not commandment

– Use for intuition, verify with numbers

• 60% can be improved by a factor of 2

– Speedup = 1/(0.4+0.6/2) = 1/0.7

• 40% can be improved by a factor of 8

– Speedup = 1/(0.6+0.4/8) = 1/0.65

• Second option is better

– Less common case, but higher speedup
compensates

10

SankaralingamCS/ECE 552 (37)

Summary

• Time and performance:

– Machine A n times faster than Machine B

– iff Time(B)/Time(A) = n

• Iron Law: Time/prog

– Instr count x CPI x Cycle time

• Other Metrics: MIPS and MFLOPS

– Beware of peak and omitted details

• Benchmarks: SPEC95

• Summarize performance:

– AM for time, HM for rate, GM for ratio

• Amdahl‟s Law: Speedup = common case
fast sff1

1

