U. Wisconsin CS/ECE 552
Introduction to Computer Architecture

Prof. Karu Sankaralingam

Performance (Chapter 4)

Slides combined and enhanced by Karu Sankaralingam from
work by Falsafi, Hill, Marculescu, Nagle, Patterson, Roth,
Rutenbar,Schmidt, Shen, Sohi, Sorin, Thottethodi,
Vijaykumar, & Wood

Performance of Computers

e Which computer is fastest?
¢ Not so simple
- Scientific simulation - FP performance

- Authoring programs - Integer
performance

- Commercial work - I/O & vast memory

CSJ/ECE 552 () Sankaralingam

Performance of Computers

e Want
- Highest Performance (modeling oil fields)
- Lowest Cost (doorknob)
- Lowest Cost/Performance (most common)

e Performance will depend on workload

e Computers not completely interchangable
- PC cannot (currently) have 128 GB memory

CS/ECE 552 3) Sankaralingam

Outline

e Time and performance

e Iron law

e Metrics: MIPS and MFLOPS

e Which programs and how to average
e Amdahl’s law

CS/ECE 552 4) Sankaralingam

http://www.cs.wisc.edu/~karu/courses/cs552/

Defining Performance

e What is important to who?
1. Computer system user

- minimize elapsed time for program = time_end
- time_start

- called response time

2. Computer center manager
- maximize completion rate = #jobs/second
- called throughput

CS/ECE 552 (5) Sankaralingam

Response Time vs. Throughput

e Is throughput = 1/av. response time?
- only if NO overlap
- with overlap, throughput > 1/av.response time
e e.g., a lunch buffet - assume 5 entrees
— each person takes 2 minutes at every entree
e throughput is 1 person every 2 minutes (1/2)
e BUT time to fill up tray is 10 minutes

- otherwise, why and what would the throughput
be?
e because there are 5 people (each at 1 entree)
simultaneously;

e if there is no such overlap throughput = 1/10

CSJ/ECE 552 (6) Sankaralingam

What is Performance for us?

e For computer architects
- CPU execution time = time spent running a
program

e Because people like faster to be bigger to match
intuition

- performance = 1/X time
- where X = response, CPU execution, etc.
e Elapsed time = CPU execution time + I/O wait

e We will concentrate mostly on CPU execution
time

CS/ECE 552 @) Sankaralingam

Improve Performance

e Improve (a) response time or (b)
throughput?
- faster CPU
e both (a) and (b)
- Add more CPUs

¢ (b) but (a) may be improved due to less
queueing

CS/ECE 552 8) Sankaralingam

Performance Comparison

e Machine A is n times faster than machine B iff
- perf(A)/perf(B) = time(B)/time(A) = n

e Machine A is x% faster than machine B iff
- perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

e E.g., A10s, B 15s
-15/10 = 1.5 => Ais 1.5 times faster than B

-15/10 =1 + 50/100 => A is 50% faster than
B

CS/ECE 552 9) Sankaralingam

Breaking Down Performance

e A program is broken into instructions
- H/W is aware of instructions, not programs

e At lower level, H/W breaks instructions into
cycles

- lower level state machines change state every
cycle

e E.g., 4 GHz Pentium 4
- runs 4 B cycles/sec
-1 cycle = 0.25 ns = 250 ps

CS/ECE 552 (10) Sankaralingam

Iron law

e Time/program = .
instrs/program x cycles/instr x sec/cycle

e sec/cycle (a.k.a. cycle time, clock time) -
‘heartbeat’ of computer

- mostly determined by technology and CPU
organization

e cycles/instr (a.k.a. CPI)

- mostly determined by ISA and CPU
organization

- overlap among instructions makes this smaller
e instr/program (a.k.a. instruction count)

- instrs executed NOT static code

- mostly determined by program, compiler, ISA

CS/ECE 552 (1) Sankaralingam

Our Goal

¢ Minimize time which is the product,
NOT isolated terms
e Common error to miss terms while
devising optimizations
-E.g., ISA change to decrease instruction
count

- BUT leads to CPU organization which
makes clock slower

CS/ECE 552 (12) Sankaralingam

Iron Law Example

e Machine A: clock 1 ns, CPI 2.0, for a program

¢ Machine B: clock 2 ns, CPI 1.2, for same program

e Thus, Machine A is 1 GHz while B is lowly 500
MHz

e Which is faster and by how much?

e Time/program =
instrs/program x cycles/instr x sec/cycle
- Time(A): Nx 2.0x 1 = 2N
-Time(B): N x 1.2 x 2 = 2.4N

e Compare: Time(B)/Time(A) = 2.4N/2N = 1.2
e On this program, Machine A is 20% faster than B

CS/ECE 552 (13) Sankaralingam

Iron Law Example

e Keep clock of A at 1 ns and clock of B at 2
ns

e For equal performance, if CPI of B is 1.2,
what is A’s CPI?
-Time(B)/Time(A) =1 = (Nx2x1.2)/(N
x 1 x CPI(A))
-CPI(A) = 2.4

CS/ECE 552 (14) Sankaralingam

Iron Law Example

e Keep CPI of A 2.0 and CPI of B 1.2

e For equal performance, if clock of B is 2
ns, what is A’s clock?
-Time(B)/Time(A) =1 = (N x 2.0 X

clock(A))/(N x 1.2 x 2)
-clock(A) = 1.2 ns

CS/ECE 552 (15) Sankaralingam

Beware of Millions of Instr / Sec

e MIPS = instruction count/(execution time x 106)
= clock rate/(CPI x 106) (How?)
e Often ignores program & quotes “peak”
- ideal conditions => guarantee not to exceed!!
e Ignores instruction/program changes
* E.g., adding floating-point H/W can hurt MIPS
* 50 simple instructions replace by one slow FP op
e Okay if
e instrs/program constant (e.g. same executable)
e real program; not peak

CS/ECE 552 (16) Sankaralingam

Beware of Millions of FP Ops / Sec

e MFLOPS =
06)FP ops in program/(execution time x
1

e Assumes FP ops independent of
compiler/ISA
—Assumption not true
—-may not have divide instruction in ISA
- optimizing compilers can remove

¢ Relative MIPS and normalized MFLOPS
—adds to confusion! (see book)

CS/ECE 552 17) Sankaralingam

Rules

e Use ONLY Time

- Beware when reading, especially if
details are omitted

- Beware of Peak

CS/ECE 552 (18) Sankaralingam

Which Programs?

e Execution time of what?

e Best case - you always run the same set of
programs
- port them and time the whole “workload”
¢ In reality, use benchmarks
- programs chosen to measure performance
- predict performance of actual workload
(hopefully)
- saves effort and money
- representative? honest?

- Example Suites: EEMBC, MediaBench, SPEC,
CS/ECE %@TPC (19) Sankaralingam

Benchmarks: SPEC CPU2000

e SPEC: System Performance Evaluation
Cooperative

e Latest is SPEC2K, before SPEC89, SPEC92,
SPEC95

e 12 integer and 14 floating point programs

- GM of the normalized times

CS/ECE 552 (20) Sankaralingam

SPEC CPU2000 Integer

SPEC CPU2000 Floating Point

Benchmark Description —
azip Compression Benchmark Description
vpr FPGA place/route wupwise Quantum chomodynamics
gcc 6NU C compiler swim Shallow water model
mcf Combinatorial optimizer mgrid Multigrid solver of 3D grid
crafty Chess applu Parabolic/elliptic PDEs
parser Word processing mesa 3D graphics library
eon Visualization galgel, art, equake, Remaining 9 FP applications
— facerec, ammp, lucas,
perlbmk Perl application fma3d, sixtrack, apsi
gap Group theory
vortex Object-oriented database
bzip2 Compression
twolf Place/route simulator
CS/ECE 552 (21) Sankaralingam CS/ECE 552 Sankaralingam
SPECfp95 How to Average
e Example
Benchmark Descrip‘rion Machine A (sec) | Machine B (sec)
su2cor Monte Carlo Program 1 1 10
mgrid 3-D potential field 5 5 1000 100
waveb EM particle simulation rogram
hydro2d Navier Stokes Equations Total 1001 110
¢ One answer: total execution time
e Then B is how much faster than A? 9.1
CS/ECE 552 (23) Sankaralingam CS/ECE 552 Sankaralingam

How to Average

e Another: arithmetic mean (same result: B 9.1 times
faster than A)

¢ Arithmetic mean of timesy Z ne r n forn
programs = J

« AM(A) = 1001/2 = 500.5
e AM(B) = 110/2 = 55
e 500.5/55 = 9.1

e Valid only if programs run equally often, else use
“weight” factors

e Weighted arithmetic mean: ﬁz Zight,. x ime r n

CS/ECE 552 (25) Sankaralingam

Other Averages

E.g., 30 mph for first 10 miles
90 mph for next 10 miles. Average speed?

e Average speed = (30+90)/2 =60mph? WRONG
e Average speed = total distance / total time

= (20/ (10/30+10/90))

= 45 mph

e What if it was 10 hours at each speed?
- instead of 10 miles

CS/ECE 552 (26) Sankaralingam

Harmonic Mean
1

e Harmonic mean of rates = (1
ﬁLE ‘e JF
= ute,

/n
- Use HM if forced to start and end with rates

e Trick to do arithmetic mean of times
but using rates and not times

CS/ECE 552 27 Sankaralingam

Dealing with Ratios

+ Absolute execution times (sec)

Machine A Machine B
Program 1 1 10
Program 2 1000 100

+ Now consider ratios (w.r.t. A)

Machine A Machine B
Program 1 1 10
Program 2 1 0.1

+ Averages: A=1,B=505

CS/ECE 552 (28) Sankaralingam

Dealing with Ratios

+ Absolute execution times (sec)

Machine A Machine B
Program 1 1 10
Program 2 1000 100
+ Now consider ratios (w.r.t. B)
Machine A Machine B
Program 1 0.1 1
Program 2 10 1

- Averages: A = 5.05, B = 1 Both cannot be true!

CS/ECE 552

(29)

Sankaralingam

CSJ/ECE 552 (30)

Geometric Mean

Don’t use arithmetic mean on ratios (normalized numbers)
Use geometric mean for ratios
- geometric mean of ratios =

- Use GM if forced to use ratios q/l_l ‘o
i=1

Independent of reference machine (math property)

In the example, GM for machine A is 1, for machine B is
also 1

Normalized with respect to either machine
Used in SPECint and SPECfp

Sankaralingam

But..

e Geometric mean of ratios is not proportional to

total time

e AM in example says machine B is 9.1 times faster
e GM says they are equal
o If we took total execution time, A and B are equal

only if

- program 1 is run 100 times more often than

program 2

e Generally, GM will mispredict for three or more

machines

CS/ECE 552

Sankaralingam

Summary for Averages

e Use AM for times
e Use HM if forced to use rates
¢ Use GM if forced to use ratios
e Better yet
—-Use unnormalized numbers to compute
time
CS/ECE 552 (32) Sankaralingam

Amdahl’s Law

e Why does the common case matter the most?
e Let an optimization speed f fraction of time by a factor of s
e assuming that old time = T, what is the speedup?

- fis the “affected” fraction of T

- (1-f) is the unaffected fraction

Amdahl’s Law Example

e Your boss asks you to
improve processor
performance

e Two options: What should 95% |1.10 |1.094
you do?

f s Speedup

« Speedup = - improve the ALU used |5% |10 |1047
- ") i [V
time,, unaffected,, + iffected,, _95 % of tlr:e’ by 10% 5% |e |1052
® = time,, unaffected,, + tffected,,, - |mprov§_‘ the square-
root unit used 5%, by
(1= 9% "+ x a factor of 10
..
(1= 9% "+ -x
S
CS/ECE 552 (33) Sankaralingam CSJ/ECE 552 (34) Sankaralingam
Amdahl’s Law: Limit Amdahl’s Law
e Make common case 10 e “"Make common case fast”
fast because: / - Heuristic, not commandment
8 / - Use for intuition, verify with numbers
(1 Y1 6 * 60% can be improved by a factor of 2

Speedup
»
N

hm'\l— “+ f/s)I -

s>

CS/ECE 552 (35) Sankaralingam

- Speedup = 1/(0.4+0.6/2) = 1/0.7
* 40% can be improved by a factor of 8

- Speedup = 1/(0.6+0.4/8) = 1/0.65
e Second option is better

- Less common case, but higher speedup
compensates

CS/ECE 552 (36) Sankaralingam

Summary

e Time and performance:
- Machine A n times faster than Machine B
— iff Time(B)/Time(A) = n
e Iron Law: Time/prog
- Instr count x CPI x Cycle time
e Other Metrics: MIPS and MFLOPS
- Beware of peak and omitted details
e Benchmarks: SPEC95
e Summarize performance:
- AM for time, HM for rate, GM for ratio

(1)
e Amdahl’s Law: Speedup = | ————1 common case
fast U=s+1/s)
CS/ECE 552 (37) Sankaralingam

10

