U. Wisconsin CS/ECE 552
Introduction to Computer Architecture

Prof. Karu Sankaralingam

Miscellaneous (5.5,5.7, 5.6, & 6.8)

www.cs.wisc.edu/~karu/courses/cs552

Slides combined and enhanced by Karu Sankaralingam from work
by Falsafi, Hill, Marculescu, Nagle, Patterson, Roth, Rutenbar,
Schmidt, Shen, Sohi, Sorin, Thottethodi, Vijaykumar, & Wood

Multicycle Approach (No Pipelining)

* Break up the instructions into steps,
each step takes a cycle

- balance the amount of work to be done

- restrict each cycle to use only one major
functional unit

+ At the end of a cycle
- store values for use in later cycles
- introduce additional “internal” registers

CS/ECE 552 @)

Outline
* Multicycle Design (5.5)

+ Implementing Control & Microprogramming
(6.7)

+ Exceptions (5.6)
+ Exceptions in a Pipeline (6.8)

CS/ECE 552)

Multicycle Approach

- We will be reusing functional units
- ALU used to compute address and to increment PC
- Memory used for instruction and data

+ Our control signals will not be determined solely by
instruction

- e.g., what should the ALU do for a "subtract”
instruction?

- We'll use a finite state machine for control

CS/ECE 552)

What Instructions Need to Do

Action for Rtype | Action for memory-reference [Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR = Memory[PC]
PC=PC+4
Instruction A=Reg [IR[25-21]]
decode/register fetch B =Reg [IR[20-16]]
ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut=AopB ALUOut = A + sign-extend if (A==B) then |PC =PC[31-28] Il
o branch/ (IR[15-0]) PC=ALUOWt | (IR[25-0j<<2)
jump completion
Memory access or R-type | Reg [IR[15-11]] = | Load: MDR = Memory[ALUOut]
completion ALUOut or
Store: Memory [ALUOut] = B
Memory read completion Load: Reg(IR[20-16]] = MDR
CS/ECE 552 (5)
Multicycle Datapath
* Miminizes Hardware: 1 memory, 1 adder
PCWr PCWrCond PCSre BrWr

emWr [RWi RegDst RegWr ALUSelA Zl
| 3
y =
!
0
2 - Rs =
0 E Ra =
2 |2 RAdr Z Re| 3 =
n E Ldeal E Rb bus
ea 2 5 i 32
Memory g _ % Revg File 4
WrAdr = = Rw
32 Din Dou 3| R4 [busW bush] 32
32
[i Mux N— —
- | <=2
Imm 7 LExtend
1o 32 ALUOp
ExtOp MemtoReg ALUSelB
CS/ECE 552 @)

FSM view of Control
/—, @ “instruction fetch”

“decode / operand fetch”

BEQ & Equal

CS/ECE 552

Outline

* Multicycle Design (5.5)

+ Implementing Control & Microprogramming
(5.7)

Exceptions (5.6)
- Exceptions in a Pipeline (6.8)

CS/ECE 552 @®)

Implementing the Control

+ Value of control signals is dependent upon:
- what instruction is being executed
- which step is being performed

+ Use the information we've acculumated to specify a

finite state machine

- specify the finite state machine graphically, or

- use microprogramming

+ Implementation can be derived from specification

CS/ECE 552 9)

Alternative: Microprogramming

Sequence of

RTL steps

- program

using

microinstru

ctions

Datapath

Instruction register
14 ppcode field

CS/ECE 552

Finite State Machine for Multicycle Control

Implementation

State bits

- D-flipflops
Control Logic

- Comb. Block

- Use PLA or
ROM

CS/ECE 552

Control logic

Inputs

Outputs

o] of s

(10)

State register ‘

execution
unit

arion
User program
plus Data
[sus 1 .
AND this can change!

one of these is

ped into one

of these

control
memory

CPU

CS/ECE 552

AND microsequence

e.g., Fetch
Calc Operand Addr
Fetch Operand(s)
Calculate

Save Answer(s)

(12)

Microprogramming

Microprogramming Pros and Cons
Ease of design
Flexibility
- Easy to adapt to changes in organization, timing, technology
- Can make changes late in design cycle, or even in the field

Can imflemem‘ very powerful instruction sets (just more
control memory)

ALU Register PCWrite |
Label control |SRC1| SRC2 [control | Memory control
Fetch Add PC 14 Read PC |ALU |§ea
Add PC _ |Extshft |Read Dispatch 1
Mem1 Add A Extend |Dispatch 2
LW2 Read ALU Seq
Write MDR Fetch
sw2 Write ALU |Fetch
Rformat1 |Func code |A B Seq
Write ALU Fetch
BEQ1 Subt A B ALUOut-cond _|Fetch
JUMP1 |> | Jump address [Fetch

+ A specification methodology (alternate to FSM)
- appropriate if hundreds of opcodes, modes, cycles, etc.
- signals specified symbolically using microinstructions
- Microassembler?

CS/ECE 552

CS/ECE 552

(13)

Next time: memory

(15)

Generality

- Can implement multiple instruction sets on same machine.
- Can tailor instruction set to application.

+ Compatibility

- Many organizations, same instruction set
+ Costly to implement

+ Slow

CS/ECE 552

(14)

Control: Summary

Control is the hard part

Initial Representation

Sequencing Control

Logic Representation

Implementation
Technique

CS/ECE 552

Finite State Diagram

\
A

Explicit Next State
unction

\
A

Logic Equations

)
A

PLA

“hardwired control”

Microprogram

Microprogram counter
+ Dispatch ROMs

Truth Tables

ROM

“microprogrammed control”

(16)

Outline Exceptions .

user program

normal control flow:
sequential, jumps, branches, calls, returns

Exception

I
I
g
=3
2

* Multicycle Design (5.5)

Al

+ Implementing Control & Microprogramming
(6.7)

return from
exception

) Excephons (56) + Exception = unprogrammed control transfer
- system takes action to handle the exception

. . . . + must record the address of the offending instruction
. EXCepTlOI’IS ha Plpelme (68) - returns control to user
- must save & restore user state

Allows constuction of a “user virtual machine”
CS/ECE 552 a7

CS/ECE 552 (18)
Interrupt, Exception, Trap? Exception Semantics
Interrupts
- caused by external events) *+ MIPS architecture defines the instruction as having
- ::;/"E';'”z::zfez°bf;’3£§:‘"ii:f:::;?:ns no effect if the instruction causes an exception.
- sim\gy suspend and resume user program + When get to virtual memory we will see that certain
Traps classes of exceptions must prevent the instruction
- caused by internal events from changing the machine state.
« exceptional conditions (overflow) . . .
« errors (parity) + This aspect of handling exceptions becomes complex
- faults (non-resident page) and potentially limits performance => why it is hard
- synchronous to program execution p L T L
- condition must be remedied by the handler - Precise interrupts vs Imprecise interrupts

- instruction may be retried or simulated and program continued or
program may be aborted
MIPS convention:
- External : Interrupts
- Internal : Exception

CS/ECE 552 (19) CS/ECE 552 (20)

MIPS Exceptions

+ All exceptions jump to same handler code
- “Cause" register

+ We consider
- Illegal instructions
- Arithmetic overflows

+ Handler behavior

Save PC of offending instruction (How? PC+4 has
already been written to PC)

- Use special register EPC(why not use $31 like jal?)
Set cause register appropriately (O=ILL; 1=OVF)
Jump to handler at fixed address

CS/ECE 552 (1)

Other issues

+ Vectored exceptions
- “cause" folded into handler address

- Different causes jump to different
handlers

+ User vs kernel mode
+ Software issues

- Disabling exceptions in handler
* Returning from interrupt

CS/ECE 552 (23)

TR <= MEM[PC] o _
PC <=PC + 4 undefined instruction
A<= R3]
B<=R[r]
S <=PC+ SX|| 00,

EPC <=PC -4
PC <= exp_addr
cause <=0

Write-back

CS/ECE 552 (22)

Outline
* Multicycle Design (5.5)

+ Implementing Control & Microprogramming
(5.7)

- Exceptions (5.6)
- Exceptions in a Pipeline (6.8)

CS/ECE 552 (24)

Exceptions

*+ Semantics
- No instruction after the exception causing
instruction may execute

- Every instruction preceding the exception
causing instruction must complete
execution

- Set cause register
- Jump to exception handler address
* Multiple instructions (exceptions) in a cycle!

CS/ECE 552 (25)

Walkthrough (1 of 2)

or$13, ..

Iw $16, 50(87) sit $15, $6, $7 add $1, $2, $1 and $12,

Clock 5

- All three instructions converted
CS/ECE 552 (27)

Datapath modifications

+ Pipeline complications
+ What stage is exception detected?

- Overflow?
+ InEX stage, Also squash (convert to nop) EX stage

- Illegal Instruction?
+ In ID stage, squash (convert to nop) ID stage
+ Similar to RAW hazard

- What about external interrupts?
+ Overflow in instruction i, illegal instruction in
instruction i+1
- Simultaneous exceptions
- Hardware sorting

CS/ECE 552 (26)

Walkthrough (2 of 2)

bubble or $13,

sw $25, 1000(S0) bubble (nop) bubble

I ——
i)
O
L)

18

Clock 6

Fetch next instruction from lllandler PC (MIISS)
CS/ECE 552 (28)

) Pipelined Processor

o il
+ Phew! e
CS/ECE 552

