
U. Wisconsin CS/ECE 552
Introduction to Computer Architecture

Prof. Karu Sankaralingam

Miscellaneous (5.5, 5.7, 5.6, & 6.8)
www.cs.wisc.edu/~karu/courses/cs552

Slides combined and enhanced by Karu Sankaralingam from work
by Falsafi, Hill, Marculescu, Nagle, Patterson, Roth, Rutenbar,
Schmidt, Shen, Sohi, Sorin, Thottethodi, Vijaykumar, & Wood

CS/ECE 552 (2)

Outline

• Multicycle Design (5.5)

• Implementing Control & Microprogramming
(5.7)

• Exceptions (5.6)

• Exceptions in a Pipeline (6.8)

CS/ECE 552 (3)

Multicycle Approach (No Pipelining)

• Break up the instructions into steps,
each step takes a cycle
– balance the amount of work to be done
– restrict each cycle to use only one major

functional unit
• At the end of a cycle

– store values for use in later cycles
– introduce additional “internal” registers

CS/ECE 552 (4)

Multicycle Approach

• We will be reusing functional units

– ALU used to compute address and to increment PC

– Memory used for instruction and data

• Our control signals will not be determined solely by
instruction

– e.g., what should the ALU do for a “subtract”
instruction?

• We’ll use a finite state machine for control

CS/ECE 552 (5)

What Instructions Need to Do

Step name

Action for R-type

instructions

Action for memory-reference

instructions

Action for

branches

Action for

jumps

Instruction fetch IR = Memory[PC]

PC = PC + 4

Instruction A = Reg [IR[25-21]]

decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)

Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II

computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)

jump completion

Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]

completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

CS/ECE 552 (6)

FSM view of Control

IR <= MEM[PC]

R-type

A <= R[rs]

B <= R[rt]

S <= A fun B

R[rd] <= S

PC <= PC + 4

S <= A or ZX

R[rt] <= S

PC <= PC + 4

ORi

S <= A + SX

R[rt] <= M

PC <= PC + 4

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B

PC <= PC + 4

BEQ & Equal

BEQ & ~Equal

PC <= PC + 4 PC <= PC +

SX || 00

SW

“instruction fetch”

“decode / operand fetch”

E
x
e
c
u
te

M
e
m
o
ry

W
ri
te
-b
a
c
k

CS/ECE 552 (7)

Multicycle Datapath
• Miminizes Hardware: 1 memory, 1 adder

Ideal

Memory
WrAdr

Din

RAdr

32

32

32

Dout

MemWr

32

A
L

U

32

32

ALUOp

ALU

Control

In
stru

ctio
n

 R
eg

32

IRWr

32

Reg File

Ra

Rw

busW

Rb

5

5

32

busA

32busB

RegWr

Rs

Rt

M
u

x

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
u

x

0

1

32

PC

MemtoReg

Extend

ExtOp

M
u

x

0

1
32

0

1

2

3

4

16Imm 32

<< 2

ALUSelB

M
u

x

1

0

Target
32

Zero

Zero

PCWrCond PCSrc BrWr

32

IorD

A
L

U
 O

u
t

CS/ECE 552 (8)

Outline

• Multicycle Design (5.5)

• Implementing Control & Microprogramming
(5.7)

• Exceptions (5.6)

• Exceptions in a Pipeline (6.8)

CS/ECE 552 (9)

Implementing the Control

• Value of control signals is dependent upon:
– what instruction is being executed
– which step is being performed

• Use the information we’ve acculumated to specify a
finite state machine
– specify the finite state machine graphically, or
– use microprogramming

• Implementation can be derived from specification

CS/ECE 552 (10)

Finite State Machine for Multicycle Control
PCWrite

PCWriteCond

IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3

NS2

NS1

NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State register

IRWrite

MemRead

MemWrite

Instruction register

opcode field

Outputs

Control logic

Inputs

• Implementation

• State bits
– D-flipflops

• Control Logic
– Comb. Block
– Use PLA or

ROM

CS/ECE 552 (11)

Alternative: Microprogramming

• Sequence of
RTL steps

– program
using
microinstru
ctions

PCWrite

PCWriteCond

IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

AddrCtl

Outputs

Microcode memory

IRWrite

MemRead

MemWrite

RegDst

Control unit

Input

Microprogram counter

Address select logic
O

p
[5

–
0

]

Adder

1

Datapath

Instruction register

opcode field

BWrite

CS/ECE 552 (12)

Macroinstruction interpretation
Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
AND

DATA

.

.

.

User program
plus Data

this can change!

AND microsequence

e.g., Fetch
Calc Operand Addr
Fetch Operand(s)
Calculate
Save Answer(s)

one of these is
mapped into one
of these

CS/ECE 552 (13)

Microprogramming

• A specification methodology (alternate to FSM)
– appropriate if hundreds of opcodes, modes, cycles, etc.
– signals specified symbolically using microinstructions
– Microassembler?

Label

ALU

control SRC1 SRC2

Register

control Memory

PCWrite

control Sequencing

Fetch Add PC 4 Read PC ALU Seq

Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2

LW2 Read ALU Seq

Write MDR Fetch

SW2 Write ALU Fetch

Rformat1 Func code A B Seq

Write ALU Fetch

BEQ1 Subt A B ALUOut-cond Fetch

JUMP1 Jump address Fetch

CS/ECE 552 (14)

Microprogramming Pros and Cons
• Ease of design
• Flexibility

– Easy to adapt to changes in organization, timing, technology
– Can make changes late in design cycle, or even in the field

• Can implement very powerful instruction sets (just more
control memory)

• Generality
– Can implement multiple instruction sets on same machine.
– Can tailor instruction set to application.

• Compatibility
– Many organizations, same instruction set

• Costly to implement
• Slow

Next time: memory

CS/ECE 552 (15)

CS/ECE 552 (16)

Control: Summary

Control is the hard part

Initial Representation Finite State Diagram Microprogram

Sequencing Control Explicit Next State Microprogram counter
Function + Dispatch ROMs

Logic Representation Logic Equations Truth Tables

Implementation PLA ROM
Technique

“hardwired control” “microprogrammed control”

CS/ECE 552 (17)

Outline

• Multicycle Design (5.5)

• Implementing Control & Microprogramming
(5.7)

• Exceptions (5.6)

• Exceptions in a Pipeline (6.8)

CS/ECE 552 (18)

Exceptions

• Exception = unprogrammed control transfer
– system takes action to handle the exception

• must record the address of the offending instruction
– returns control to user
– must save & restore user state

• Allows constuction of a “user virtual machine”

user program

normal control flow:

sequential, jumps, branches, calls, returns

System

Exception

HandlerException:

return from

exception

CS/ECE 552 (19)

Interrupt, Exception, Trap?
• Interrupts

– caused by external events
– asynchronous to program execution
– may be handled between instructions
– simply suspend and resume user program

• Traps
– caused by internal events

• exceptional conditions (overflow)
• errors (parity)
• faults (non-resident page)

– synchronous to program execution
– condition must be remedied by the handler
– instruction may be retried or simulated and program continued or

program may be aborted
• MIPS convention:

– External : Interrupts
– Internal : Exception

CS/ECE 552 (20)

Exception Semantics

• MIPS architecture defines the instruction as having
no effect if the instruction causes an exception.

• When get to virtual memory we will see that certain
classes of exceptions must prevent the instruction
from changing the machine state.

• This aspect of handling exceptions becomes complex
and potentially limits performance => why it is hard
– Precise interrupts vs Imprecise interrupts

CS/ECE 552 (21)

MIPS Exceptions
• All exceptions jump to same handler code

– “Cause” register

• We consider

– Illegal instructions

– Arithmetic overflows

• Handler behavior

– Save PC of offending instruction (How? PC+4 has
already been written to PC)

– Use special register EPC(why not use $31 like jal?)

– Set cause register appropriately (0=ILL; 1=OVF)

– Jump to handler at fixed address

CS/ECE 552 (22)

Control FSM IR <= MEM[PC]

PC <=PC + 4

R-type

A <= R[rs]

B <= R[rt]

S <=PC + SX || 00

S <= A fun B

R[rd] <= S

S <= A + SX

R[rt] <= M

M <= MEM[S]

LW

MEM[S] <= B

If (A=B)

PC <=S

SW

E
x
e
c
u
te

M
e
m
o
ry

W
ri
te
-b
a
c
k

BEQ

undefined instruction

EPC <= PC - 4

PC <= exp_addr

cause <= 0

SWLW

EPC <= PC - 4

PC <= exp_addr

cause <= 1

overflow

overflow

Other

CS/ECE 552 (23)

Other issues

• Vectored exceptions

– “cause” folded into handler address

– Different causes jump to different
handlers

• User vs kernel mode

• Software issues

– Disabling exceptions in handler

• Returning from interrupt

CS/ECE 552 (24)

Outline

• Multicycle Design (5.5)

• Implementing Control & Microprogramming
(5.7)

• Exceptions (5.6)

• Exceptions in a Pipeline (6.8)

CS/ECE 552 (25)

Exceptions

• Semantics

– No instruction after the exception causing
instruction may execute

– Every instruction preceding the exception
causing instruction must complete
execution

– Set cause register

– Jump to exception handler address

• Multiple instructions (exceptions) in a cycle!

CS/ECE 552 (26)

Datapath modifications
• Pipeline complications

• What stage is exception detected?

– Overflow?
• In EX stage, Also squash (convert to nop) EX stage

– Illegal Instruction?
• In ID stage, squash (convert to nop) ID stage

• Similar to RAW hazard

– What about external interrupts?

• Overflow in instruction i, illegal instruction in
instruction i+1

– Simultaneous exceptions

– Hardware sorting

CS/ECE 552 (27)

Walkthrough (1 of 2)

• All three instructions converted to nop

slt $15, $6, $7lw $16, 50($7) add $1, $2, $1 or $13, . . . and $12, . . .

Clock 5

40000040

0

0

0

010

10

0

0

1

58 54

54

12

$6

$7

15

50

$2

$1

$1

13 12

Data

memory

bubble (nop)sw $25, 1000($0) bubble bubble or $13, . . .

Clock 6

40000044

40000044

13

0

0

0

000

00
00

00

1

13

Data

memory

40000040

PC

4

Registers

Sign

extend

M

u

x

M

u

x

M

u

x

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

M

u

x

M

u

x

Hazard

detection

unit

Forwarding

unit

IF.Flush

IF/ID

=

Except

PC

40000040

0

M

u

x

0

M

u

x

0

M

u

x

ID.Flush EX.Flush

Cause

Shift

left 2

PC

4

Registers

Sign

extend

M

u

x

M

u

x

M

u

x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

M

u

x

M

u

x

Hazard

detection

unit

Forwarding

unit

IF.Flush

IF/ID

=

Except

PC

40000040

0

M

u

x

0

M

u

x

0

M

u

x

ID.Flush EX.Flush

Cause

Shift

left 2

Instruction

memory

Instruction

memory

Control

CS/ECE 552 (28)

Walkthrough (2 of 2)

• Fetch next instruction from handler PC (MIPS)

slt $15, $6, $7lw $16, 50($7) add $1, $2, $1 or $13, . . . and $12, . . .

Clock 5

40000040

0

0

0

010

10

0

0

1

58 54

54

12

$6

$7

15

50

$2

$1

$1

13 12

Data

memory

bubble (nop)sw $25, 1000($0) bubble bubble or $13, . . .

Clock 6

40000044

40000044

13

0

0

0

000

00
00

00

1

13

Data

memory

40000040

PC

4

Registers

Sign

extend

M

u

x

M

u

x

M

u

x

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

M

u

x

M

u

x

Hazard

detection

unit

Forwarding

unit

IF.Flush

IF/ID

=

Except

PC

40000040

0

M

u

x

0

M

u

x

0

M

u

x

ID.Flush EX.Flush

Cause

Shift

left 2

PC

4

Registers

Sign

extend

M

u

x

M

u

x

M

u

x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

M

u

x

M

u

x

Hazard

detection

unit

Forwarding

unit

IF.Flush

IF/ID

=

Except

PC

40000040

0

M

u

x

0

M

u

x

0

M

u

x

ID.Flush EX.Flush

Cause

Shift

left 2

Instruction

memory

Instruction

memory

Control

CS/ECE 552 (29)

PC

Instruction

memory

4

Registers

Sign

extend

M

u

x

M

u

x

M

u

x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

M

u

x

Data

memory

M

u

x

Hazard

detection

unit

Forwarding

unit

IF.Flush

IF/ID

M

u

x

Except

PC

40000040

0

M

u

x

0

M

u

x

0

M

u

x

ID.Flush EX.Flush

Cause

Shift

left 2

Write

data

Read

data

Address

Read

data

Address Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

ALU

control

3216

In
s
tr

u
c
ti
o

n

Instruction [15– 11]

Instruction [20– 16]

Instruction [20– 16]

Instruction [25– 21]

R
e

g
W

ri
te

ALUOp

ALUSrc

RegDst

M
e

m
W

ri
te

MemRead

M
e

m
to

R
e

g

Branch

=

Pipelined Processor

• Phew!

