U. Wisconsin CS/ECE 552
Introduction to Computer Architecture

Prof. Karu Sankaralingam

Miscellaneous (5.5, 5.7, 5.6, & 6.8)

www.cs.wisc.edu/~karu/courses/csbb2

Slides combined and enhanced by Karu Sankaralingam from work
by Falsafi, Hill, Marculescu, Nagle, Patterson, Roth, Rutenbar,
Schmidt, Shen, Sohi, Sorin, Thottethodi, Vijaykumar, & Wood

Outline

* Multicycle Design (5.5)

* Implementing Control & Microprogramming
(5.7)

+ Exceptions (5.6)

+ Exceptions in a Pipeline (6.8)

CS/ECE 552 2)

Multicycle Approach (No Pipelining)

* Break up the instructions into steps,
each step takes a cycle

- balance the amount of work to be done

- restrict each cycle to use only one major
functional unit

»+ At the end of a cycle
- store values for use in later cycles
- infroduce additional "internal” registers

CS/ECE 552 (3)

Multicycle Approach

We will be reusing functional units
- ALU used to compute address and to increment PC
- Memory used for instruction and data

* Our control signals will not be determined solely by
instruction

- e.g., what should the ALU do for a "subtract”
instruction?

- We'll use a finite state machine for control

CS/ECE 552 (4)

What Instructions Need to Do

Action for R-type | Action for memory-reference | Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR = Memory[PC]
PC=PC+4
Instruction A =Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]
ALUOut = PC + (sign-extend (IR[15-0]) << 2)

Execution, address ALUOut=AopB ALUOut = A + sign-extend if (A==B)then |PC=PC[31-28] Il
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type | Reg [IR[15-11]] = | Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B
Memory read completion Load: Reg[IR[20-16]] = MDR

CS/ECE 552 (5)

FSM view of Control

/ > (IR <= MEM[PC]) 'instruction fetch”

A <= R][rs] “decode / operand fetch”
B <= R|rt]
R-type ORI L S BEQ & Equal
: BEQ«) | &
= = _ _ C <= PC +

MEM[S] <= B

Memory Execute

Write-back

CS/ECE 552 (6)

Multicycle Datapath

* Miminizes Hardware: 1 memory, 1 adder

PCWr _PCWrCond PCSrc BrWr
Zero | |
-
! IorD MemWr IRWr RegDst RegWr ALUSelA 314*32 Targetl
< L 32 | =
< 7 1 e
/ _ <
32 'O\I L Zerol
N R
r - 7
? = 39 Rt +—| Rb busA_« >)J]g ;;
(&) -
37 Ideal =, 0] 3 Reg File | 32 ™ = LAIE
Memory S Rt 2 4 "0 7 g
s WrAdr |32 | = Rw » {, 3212
32 a »| Din Dout # g RdJ I_' bustusBI 32 - 32
32 |2
IT /1 Mux 0\ o 3 ALU
I <<2 ~" | Control
—| Extend 7
Imm ¢ 32
| ALUOp
ExtOp MemtoReg ALUSelB

CS/ECE 552 (7)

Outline

* Multicycle Design (5.5)

 Implementing Control & Microprogramming
(5.7)

+ Exceptions (5.6)

+ Exceptions in a Pipeline (6.8)

CS/ECE 552 (8)

Implementing the Control

* Value of control signals is dependent upon:
- what instruction is being executed
- which step is being performed

» Use the information we've acculumated to specify a
finite state machine

- specify the finite state machine graphically, or
- use microprogramming

* Implementation can be derived from specification

CS/ECE 552 9)

Finite State Machine for Multicycle Control

—1 PCWrite

y Implemen’ra’rion PCWriteCond

lorD
MemRead

+ State bits vemie

IRWTrite

- D-flipflops Control logic Vemiorcs

¢ ConTr'OI Logic PCSource
ALUOp

- Comb. Block Outputs) ALUSrcB

- Use PLA or ALUSTEA
ROM RegWrite

RegDst

NS3
NS2

NS1
Inputs NSO

< O N = O
o o o o

Op5
p

Instruction register(’] State register

opcode field 'y T 5 Y

CS/ECE 552 (10)

Alternative: Microprogramming

Control unit PCWrite
PCWriteCond
lorD

y Sequence Of Microcode memory mmsﬁig Datapath

RTL STZPS IRWrite

BWrite
Outputs < | MemtoReg

- progr‘am PCSource
using ALUOp

ALUSrcB

microinstru ALUSTICA
RegWrite

CTIOHS . [RegDst
AddrCtl

Input

—_—

l = Microprogram counter
\V Prog
Adder 1

Address select logic

Op[5-0]

Instruction register(]
(1 1 j)pcode field

CS/ECE 552

Main
Memory

ADD

SUB

LAND

__DATA

execution
unit

CPU control

CS/ECE 552

(12)

—Maeroinstruction interbretation
User program

plus Data

this can change!

one of these is
mapped into one
of these

AND microsequence

e.d., Fetch
Calc Operand Addr
Fetch Operand(s)
Calculate
Save Answer(s)

Microprogramming

ALU Register PCWrite
Label control [SRC1| SRC2 | control Memory control Sequencing
Fetch Add PC |4 Read PC |ALU Seq
Add PC Extshft |Read Dispatch 1
Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq
Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 [Func code [A B Seq
Write ALU Fetch
BEQ1 Subt A B ALUOut-cond _[Fetch
JUMP1 Jump address |[Fetch

- A specification methodology (alternate to FSM)
- appropriate if hundreds of opcodes, modes, cycles, etc.
- signals specified symbolically using microinstructions
- Microassembler?

CS/ECE 552

(13)

Microprogramming Pros and Cons

Ease of design

Flexibility
- Easy to adapt to changes in organization, timing, technology
- Can make changes late in design cycle, or even in the field

Can implement very powerful instruction sets (just more
control memory)

Generality
- Can implement multiple instruction sets on same machine.
- Can tailor instruction set to application.

Compatibility
- Many organizations, same instruction set

Costly to implement

Slow

CS/ECE 552 (14)

Next time: memory

CS/ECE 552 (15)

Control: Summary

Control is the hard part

Initial Representation

Sequencing Control

Logic Representation

Implementation
Technique

CS/ECE 552

Finite State Diagram

Microprogram

| =

Explicit Next State
Function

Microprogram counter
+ Dispatch ROMs

e

Logic Equations

—

PLA

Truth Tables

|

ROM

“hardwired control”

“microprogrammed control”

(16)

Outline

* Multicycle Design (5.5)

* Implementing Control & Microprogramming
(5.7)

- Exceptions (5.6)
+ Exceptions in a Pipeline (6.8)

CS/ECE 552 (17)

Exceptions ..

user program Exception

" return from
exception

1]
!

normal control flow:
sequential, jumps, branches, calls, returns

- Exception = unprogrammed control transfer
- system takes action to handle the exception
* must record the address of the offending instruction
- returns control to user
- must save & restore user state
- Allows constuction of a "user virtual machine”

CS/ECE 552 (18)

Interrupt, Exception, Trap?

Interrupts
- caused by external events
- asynchronous to program execution
- may be handled between instructions
- simply suspend and resume user program
Traps
- caused by internal events
- exceptional conditions (overflow)
- errors (parity)
» faults (non-resident page)
- synchronous o program execution
- condition must be remedied by the handler

- instruction may be retried or simulated and program continued or
program may be aborted

MIPS convention:
- External : Interrupts
- Internal : Exception

CS/ECE 552 (19)

Exception Semantics

MIPS architecture defines the instruction as having
no effect if the instruction causes an exception.

When get to virtual memory we will see that certain
classes of exceptions must prevent the instruction
from changing the machine state.

» This aspect of handling exceptions becomes complex
and potentially limits performance => why it is hard

- Precise interrupts vs Imprecise interrupts

CS/ECE 552 (20)

MIPS Exceptions

+ All exceptions jump to same handler code
- "Cause" register

- We consider
- Tllegal instructions
- Arithmetic overflows

* Handler behavior

- Save PC of offending instruction (How? PC+4 has
already been written to PC)

- Use special register EPC(why not use $31 like jal?)
- Set cause register appropriately (O=ILL; 1=OVF)
- Jump to handler at fixed address

CS/ECE 552 (21)

IR <= MEM[PC]

PC <=PC + 4 undefined instruction

: <="R[rs

S <=PC + SX || 00

R-type LW/[sw BEQ
O
S
S/ If (A=B)
L%l) S<=AfunB PC <=S
overflow L
b I v
o ovelflow
£ EPC <= PC - 4\ M <= MEM[S
S PC <= exp_addr
cause <=1 Y
R[rd] <=S R[rt] <=M

Write-back

CS/ECE 552 (22)

Other issues

+ Vectored exceptions
- "cause” folded into handler address

- Different causes jump to different
handlers

+ User vs kernel mode
- Software issues

- Disabling exceptions in handler
* Returning from interrupt

CS/ECE 552 (23)

Outline

* Multicycle Design (5.5)

* Implementing Control & Microprogramming
(5.7)

+ Exceptions (5.6)

- Exceptions in a Pipeline (6.8)

CS/ECE 552 (24)

Exceptions

- Semantics

- No instruction after the exception causing
Instruction may execute

- Every instruction preceding the exception
causing instruction must complete
execution

- Set cause register
- Jump to exception handler address
* Multiple instructions (exceptions) in a cyclel

CS/ECE 552 (25)

Datapath modifications

Pipeline complications
What stage is exception detected?

- Overflow?
» In EX stage, Also squash (convert to nop) EX stage

- Tllegal Instruction?

* In ID stage, squash (convert to nop) ID stage
» Similar to RAW hazard

- What about external interrupts?

Overflow in instruction i, illegal instruction in
instruction i+l

- Simultaneous exceptions
- Hardware sorting

CS/ECE 552 (26)

Walkthrough (1 of 2)

w $16, 50($7) slt $15, $6, $7 add $1, $2, $1 or$13, . .. and $12, . . .

IF.Flush ID.Flush

[2f=151
T <
<

|§|§|

EEN /WB
1
WB|

B
Control o M
0 X
—
0
p— | IEE
+
58 1 54 >
+
PC
Shift
left 2 $6
1l $2

()
M
=] url
X
Registers
12
_I Instruction (] | > Data -
PC o — memory M
40000040 ‘ | M. 5 M) u
Mo | $1 X
54 =] U]
X
il

Clock 5

* All three instructions converted to nop

CS/ECE 552 (27)

Walkthrough (2 of 2)

sw $25, 1000($0) bubble (nop) bubble bubble or $13, ...
1
(Hazard \
eeeeeeeee 1
\L ID/EX
40000040 ==

1 00
0 - 00 I ——
EX/MEM
Control M 0 000

1 oo
v . v e I_M'EN w8
40080044) 0 | - -
pre— IEE . i Cause M WB
Except!] [] []
PC
4 ey .
_I egisters
PC Instructiont1|_| >AL mData - ’
40000044 memory u
X

40000040
- ,“-"a 1
\UJ

- X
| L~ L ---l
Forwarding
unit J
Clock 6 —(
L]

Fetch next instruction from handler PC (MIPS)
CS/ECE 552 (28)

N
=

-
rcxcz)rci:)
/

[F= Pipelined Processor

IF.Flush ID.Flush EX.Flush
(Hazard \
- detection ' J
—'K unit) : Y
M ID/EX ﬁn
40000040 u [u
X
, VB 0 _.U ' EXIMEM
A i | IR (vl L
» Control ; > g M g WB MEM/WB
> —> J 0 =—>|
IEiD > . o b Exl Cause M WB
v s M - © —
+ > > > Except(] £
x PC %
4 — Shift ALUSrc %
)
left 2 Read’ Read ° o)
register 1data L M s
) > —>| U] Datall e
Instruction(c Read(’ X memor E
Y memory S register 2 W, y =
—| S Registers = 3
PC Address 2 Writel] J Address (-
Readl k= register Readh | N\ v Read(/L,
data > Write data2 M[] ~(M | Write D)
data a 5‘ u data
X
\‘J t |
16 Sign 32 MemRead
\\ @ \\ ALUO
Instruction [25- 21] RegDst]
Instruction [20-16]
Instruction [20— 16] fl\a
- Instruction [15—11] u >
> X I
L Forwardingl |+
unit

* Phew! ‘

xcZ

CS/ECE 552 29

