
U. Wisconsin CS/ECE 552
Introduction to Computer Architecture

Prof. Karu Sankaralingam

Memory (Chapter 7)

www.cs.wisc.edu/~karu/courses/cs552

Slides combined and enhanced by Mark D. Hill from work
by Falsafi, Marculescu, Nagle, Patterson, Roth, Rutenbar,

Schmidt, Shen, Sohi, Sorin, Thottethodi, Vijaykumar, & Wood

http://www.cs.wisc.edu/~karu/courses/cs552
http://www.cs.wisc.edu/~karu/courses/cs552
http://www.cs.wisc.edu/~karu/courses/cs552

CS/ECE 552: Memory (2)

Outline

• Memory

– Technology, organization, motivation for
hierarchical organization

Control

Datapath

Memory

Processor

Input

Output

CS/ECE 552: Memory (3)

Memory
• Storage elements

– registers, latches.
• Small
• In processor
• Expensive to add (??)

– SRAM (Caches)
• Medium
• Onchip or board, close to processor
• Costly

– DRAM (Main memory)
• Large
• 50ns access time
• Cheap $0.12-0.15/MB (512MB for 60-75$ *)

– Disk/Tape etc.
• Large, far from processor
• Slow (~ms)
• Cheap $0.37-0.40/GB (160GB for 60-65$ *)

Processor Datapath

Memory subsystem

I/O subsystem

CS/ECE 552: Memory (4)

Memory Hierarchy Technology
• Random Access:

– ―Random‖ is good: access time is the same for all locations
– DRAM: Dynamic Random Access Memory

• High density, low power, cheap, slow
• Dynamic: need to be ―refreshed‖ regularly

– SRAM: Static Random Access Memory
• Low density, high power, expensive, fast
• Static: content will last ―forever‖(until lose power)

• ―Not-so-random‖ Access Technology:
– Access time varies from location to location and from time to

time
– Examples: Disk, CDROM

• Sequential Access Technology: access time linear in location
(e.g.,Tape)

• The Main Memory: DRAMs + Caches: SRAMs

CS/ECE 552: Memory (5)

DRAM

• Dynamic RAM

– Dense, 1T/bit-cell

– Forgets after a while

– 16Mb : 4K x 4K cell-array

– 24 bit address
• 12 bit for row, 12 for column—

reflected in the interface

• Implementation

– Word/byte DRAM built as
DIMM/SIMMs

CS/ECE 552: Memory (6)

1T DRAM cell
• Charge on capacitor
• Write:

– 1. Drive bit line
– 2.. Select row

• Read:
– 1. Precharge bit line to Vdd
– 2.. Select row
– 3. Cell and bit line share charges

• Very small voltage changes on the bit line

– 4. Sense (fancy sense amp)
• Can detect changes of ~1 million electrons*

– 5. Write: restore the value
• Refresh

– 1. Just do a dummy read to every cell.

row select

bit

CS/ECE 552: Memory (7)

Classical DRAM Organization

r
o
w

d
e
c
o
d
e
r

row
address

Column Selector &
I/O Circuits Column

Address

data

RAM Cell
Array

word (row) select

bit (data) lines

• Row and Column Address together:
– Select 1 bit a time

Each intersection represents

a 1-T DRAM Cell

CS/ECE 552: Memory (8)

DRAM Optimizations

• Fast Page Mode:

– Row once, vary column address

• EDO DRAM: Extended data out

– FPM plus pipelining

• Synchronous DRAM

– Tied to system clock, increasing bus-speed

– SDRAM-DDR, DDR-2?

• Fully Buffered DRAM (FB-DIMM)

CS/ECE 552: Memory (9)

DRAM organizations
• DRAM core unchanged

• Organization/data
transfer optimizations

• Compare SDRAM vs. DDR
vs DDR2

• Picture source:

http://www.lostcircuits.com/ via
xbitlabs.com

http://www.lostcircuits.com/

CS/ECE 552: Memory (10)

FB-DIMM

Source: http://www.intel.com/technology/magazine/computing/Fully-buffered-DIMM-0305.htm

CS/ECE 552: Memory (11)

SRAM

• Data is static (as long as power is applied)

• Logically, two cross-connected inverters with
switches

– CMOS inverter, MOS switch

– 6-transistor implementation

CS/ECE 552: Memory (12)

6T SRAM Cell

• Write:
1. Drive bit lines (bit=1, bit=0)
2.. Select row

• Read:
1. Precharge bit and bit to Vdd
2.. Select row
3. Cell pulls one line low
4. Sense amp on column detects difference between bit and bit

6-Transistor SRAM Cell

bit bit

word
(row select)

bit bit

word

5T version: replaced with pullup
to save area

10

0 1

CS/ECE 552: Memory (13)

SRAM Organization (16x4)

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

- +Sense Amp - +Sense Amp - +Sense Amp - +Sense Amp

: : : :

Word 0

Word 1

Word 15

Dout 0Dout 1Dout 2Dout 3

- +
Wr Driver &

Precharger - +
Wr Driver &

Precharger - +
Wr Driver &

Precharger - +
Wr Driver &

Precharger

A
d

d
ress D

eco
d

er

WrEn

Precharge

Din 0Din 1Din 2Din 3

A0

A1

A2

A3

CS/ECE 552: Memory (14)

SRAM Organization

• Internal arrays may be different
– 32Kx8 array realized with 8 512x64 arrays

512 64

SRAM

Mux

Dout7

512 64

SRAM

Mux

Dout6

512 64

SRAM

Mux

Dout5

512 64

SRAM

Mux

Dout4

512 64

SRAM

Mux

Dout3

512 64

SRAM

Mux

Dout2

512 64

SRAM

Mux

Dout1

512 64

SRAM

Mux

Dout0

9-to-512

decoder
Address

[14– 6]

64

512

Address

[5– 0]

CS/ECE 552: Memory (15)

Technology Trends

Capacity Speed (latency)

Logic: 2x in 3 years 2x in 3 years

DRAM: 4x in 3 years 2x in 10 years

Disk: 4x in 3 years 2x in 10 years

DRAM

Year Size Cycle Time

1980 64 Kb 250 ns

1983 256 Kb 220 ns

1986 1 Mb 190 ns

1989 4 Mb 165 ns

1992 16 Mb 145 ns

1995 64 Mb 120 ns

1998 256 Mb

2001 1 Gb 60ns

2004 4 Gb 50ns**

CS/ECE 552: Memory (16)

Consequences
• Large and growing Processor-Memory Gap

µProc

60%/yr.

(2X/1.5yr)

DRAM

9%/yr.

(2X/10 yrs)1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU
1
9
8
2

Processor-Memory

Performance Gap:

(grows 50% / year)

P
e
rf

o
rm

a
n

c
e

Time

“Moore’s Law***”

CS/ECE 552: Memory (17)

Challenge: Proc-Mem Gap

• Fact: Large memories are slow (and cheap),
fast memories are small (and expensive)

• How do we create a memory that is large,
cheap and fast (most of the time)?

– Hierarchy

– Parallelism

CS/ECE 552: Memory (18)

The Memory Hierarchy
• By taking advantage of the principle of locality:

– Present the user with as much memory as is available in the
cheapest technology.

– Provide access at the speed offered by the fastest technology.
• Flip-flops/latches->SRAM->DRAM->magnetic disks

Control

Datapath

Secondary

Storage

(Disk)

Processor

R
eg

isters

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

O
n

-C
h

ip

C
a

ch
e

1s 10,000,000s

(10s ms)

Speed (ns): 5-10s 50-100s

100s
Gs

Size (bytes): Ks(~Ms) Ms(~Gs)

Tertiary

Storage

(Disk)

10,000,000,000s

(10s sec)

Ts

CS/ECE 552: Memory (19)

Locality

• The Principle of Locality:
– Program access a relatively small portion of the address

space at any instant of time.
• A library

– Finding the few books you want: Slow
– One you found the books

• Reading various chapters: Fast
• Switching between books: Fast

– Library -> Memory: Larger the better
– Books at table -> Cache: Size is limited but access is faster

Address Space0 2^n - 1

Probability
of reference

CS/ECE 552: Memory (20)

Two flavors of locality

• Temporal Locality (Locality in Time):
Keep most recently accessed data items closer to the
processor
Odds are you’ll refer to books on your table more than once

• Spatial Locality (Locality in Space):
Move blocks consists of contiguous words to the upper levels
Odds are you’ll read read contiguous pages/chapters

Lower Level

MemoryUpper Level

Memory
To Processor

From Processor

Blk X

Blk Y

CS/ECE 552: Memory (21)

Illusion of Speed and Capacity

• Hit: data appears in some block in the upper level (example:
Block X)
– Hit Rate: the fraction of memory access found in the upper

level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss
• Miss: data needs to be retrieve from a block in the lower level

(Block Y)
– Miss Rate = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor
• Hit Time << Miss Penalty

Lower Level

MemoryUpper Level

Memory
To Processor

From Processor

Blk X

Blk Y

CS/ECE 552: Memory (22)

Why Memory Hierarchies Work

• Amdahl’s Law: Make the common case fast

• Locality (usually) makes cache hit common

• Average memory access time (AMAT)

= access-time + miss-rate * miss-penalty

– 1 ns + 0.02 * 10ns = 1.2ns << 10ns

CS/ECE 552: Memory (23)

Summary

• Why do we care about the memory system?

– CPU only as fast as mem-system can supply

• Understand SRAM/DRAM technology

• Exploit locality to (partially) overcome
processor-memory gap

CS/ECE 552: Memory (24)

The Solution: Hierarchy

Control

Datapath

Memory

Processor

M
em

o
ry

Memory

Memory

M
em

o
ry

Fastest Slowest

Smallest Biggest

Highest Lowest

Speed:

Size:

Cost:

CS/ECE 552: Memory (25)

Big picture

• Why do we care about AMAT? AMAT affects CPI
– Remember there is 1.x memory ops per instruction

Processor

$

MEM

Memory

reference stream

<op,addr>, <op,addr>,<op,addr>,<op,addr>, . . .

op: i-fetch, read, write

Optimize the memory system organization

to minimize the average memory access time

for typical workloads

Workload or

Benchmark

programs

CS/ECE 552: Memory (26)

Impact on Pipelined Performance
• Suppose a processor executes at

– Clock Rate = 2 GHz (0.5 ns per cycle)
– CPI = 1.1
– 50% arith/logic, 30% ld/st, 20% control

• Suppose that 5% of memory
operations get 100 cycle (50ns)
miss penalty

• CPI = ideal CPI + average stalls per instruction
= 1.1(cyc) +(0.30 (datamops/ins)

x 0.05 (miss/datamop) x 100 (cycle/miss))
= 1.1 cycle + 1.5 cycle

= 2. 6
• ~58 % of the time the processor

is stalled waiting for memory!

• A 0.5% instruction miss rate would add
an additional 0.5 cycles to the CPI

CS/ECE 552: Memory (27)

Managing the memory hierarchy

• Whose responsibility is it?

– Short answer: it depends on the level

Control

Datapath

Secondary

Storage

(Disk)

Processor

R
eg

isters

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

O
n

-C
h

ip

C
a

ch
e

Tertiary

Storage

(Disk)

CS/ECE 552: Memory (28)

Register<->Main memory

• Managed explicitly by compiler/programmer
– ―Word‖ granularity
– Load/store ties memory locations to registers (allocation)
– Register temporaries (―spill‖ to memory when needed)

• Complexity!

Control

Datapath

Secondary

Storage

(Disk)

Processor

R
eg

isters

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

O
n

-C
h

ip

C
a

ch
e

Tertiary

Storage

(Disk)

CS/ECE 552: Memory (29)

Disk<->Memory

• Programmer: Explicit file read/write
• Disk-block/Page granularity
• OS: Automatic transparent to user

– Virtual memory
– Illusion of large memory, protection
– More later

Control

Datapath

Secondary

Storage

(Disk)

Processor

R
eg

isters

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

O
n

-C
h

ip

C
a

ch
e

Tertiary

Storage

(Disk)

CS/ECE 552: Memory (30)

Cache<->Memory

• Hardware managed: needs to be fast
• Automatic: to avoid complexity of explicit management
• ―Block‖ granularity to exploit spatial locality
• Retain recently accessed blocks to exploit temporal locality

Control

Datapath

Secondary

Storage

(Disk)

Processor

R
eg

isters

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

O
n

-C
h

ip

C
a

ch
e

Tertiary

Storage

(Disk)

CS/ECE 552: Memory (31)

Cache Operation

• Tag, data, valid
• Tag:

– Mapping larger space (all
addresses) to a smaller space
(cache)

– To identify which block
(address) is resident

• Data:
– Block: more than one word

• Valid:
– Not everything in cache is

meaningful
• Frame (block-frame/cache-

frame)

TAG Data (block)V

To Processor

To Memory

CS/ECE 552: Memory (32)

Cache Operation

• Hit/Miss detection

– If (incoming tag == stored tag)
• Hit //i.e. block is resident in cache

• Return word to processor

– Else
• Miss

– Make space : replace some other block

– Get block from memory

– Put block in ―data‖ part, set tag using new address tag

CS/ECE 552: Memory (33)

Example of cache operation

• 16-frame cache

• 16 bit address-space

• Use***:

– Lower four bits of
address as index of
frame

– All other bits of
address as tag

TAG Data (block)V

To Processor

To Memory

CS/ECE 552: Memory (34)

Cache Operation

• Cache operation
for the following
address-stream

0xaa1

TAG Data (block)

0xfff

V

To Processor

To Memory

0xaa10

0xaaa0

0xffff

0xaaa0

0xffff

0xaaa0

0xaaa

aaa 0

Tag Index

CS/ECE 552: Memory (35)

Lookahead
• Summary:

– Cache management in hardware
– Caches terminology and organization

• Frames
• Blocks
• Tags

– Example of Cache operation
• Next lecture : 4 questions

– Where is a block placed?
– How is a block found?
– Which block is replaced?
– What happens on a write?

CS/ECE 552: Memory (36)

Cache Operation

• Tag
comparators

• Hit detection

• How many
frames?

• What is the
cache size?

• What if block
size is more
than one word?

Address (showing bit positions)

20 10

Byte

offset

Valid Tag DataIndex

0

1

2

1021

1022

1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0

CS/ECE 552: Memory (37)

Block Size Tradeoff
• In general, larger block size take advantage of spatial locality

BUT:
– Larger block size means larger miss penalty:

• Takes longer time to fill up the block

– If block size is too big relative to cache size, miss rate will
go up

• Too few cache blocks

• In general, Average Memory Access Time:
– = Acces Time + Miss Penalty x Miss Rate

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size

CS/ECE 552: Memory (38)

Block Size

• Measurements from real programs
• Bottomline: Block size chosen by experiment,

typically 16-128 bytes

1 KB

8 KB

16 KB

64 KB

256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
 r

a
te

64164

Block size (bytes)

CS/ECE 552: Memory (39)

Multi-word Cache Blocks

• Use block-offset lines to select word

Address (showing bit positions)

16 12 Byte

offset

V Tag Data

Hit Data

16 32

4K

entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

CS/ECE 552: Memory (40)

Four Questions for Memory Hierarchy

• Q1: Where can a block be placed in the upper level?
(Block placement)

• Q2: How is a block found if it is in the upper level?
(Block identification)

• Q3: Which block should be replaced on a miss?
(Block replacement)

• Q4: What happens on a write?
(Write strategy)

CS/ECE 552: Memory (41)

Q1. Block Placement

• In previous example:
– Block may reside in one fixed frame. (frame[addr mod 16])

• Other points in the design space
• Fully-associative

– Block a reside in any frame
• N-way set-associative

– Block may reside in a set of N-frames

1

2
Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

1

2
Tag

Data

Set # 0 1 2 3

Search

Set associative

1

2
Tag

Data

Search

Fully associative

CS/ECE 552: Memory (42)

Example: 1 KB Direct Mapped Cache with 32 B Blocks

• For a 2 ** N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0

1

2

3

:

Cache Data

Byte 0

0431

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part

of the cache “state”

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

Byte Select

Ex: 0x00

9

CS/ECE 552: Memory (43)

Another Extreme Example: Fully Associative
• Fully Associative Cache

– Forget about the Cache Index
– Compare the Cache Tags of all cache entries in parallel
– Example: Block Size = 2 B blocks, we need N 27-bit

comparators
• By definition: Conflict Miss = 0 for a fully associative cache

:

Cache Data

Byte 0

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Cache Tag

Byte Select

Ex: 0x01

X

X

X

X

X

CS/ECE 552: Memory (44)

A Two-way Set Associative Cache
• N-way set associative: N entries for each Cache Index

– N direct mapped caches operates in parallel
• Example: Two-way set associative cache

– Cache Index selects a ―set‖ from the cache
– The two tags in the set are compared in parallel
– Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

CS/ECE 552: Memory (45)

Disadvantage of Set Associative Cache

• N-way Set Associative Cache versus Direct Mapped Cache:
– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss decision and set selection

• In a direct mapped cache, Cache Block is available BEFORE
Hit/Miss:
– Possible to assume a hit and continue. Recover later if miss.

Cache Data

Cache Block 0

Cache Tag

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

CS/ECE 552: Memory (46)

4-way set associative cache
Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

CS/ECE 552: Memory (47)

Performance

• A little associativity goes a long way

0%

3%

6%

9%

12%

15%

Eight-wayFour-wayTwo-wayOne-way

1 KB

2 KB

4 KB

8 KB

M
is

s
 r

a
te

Associativity 16 KB

32 KB

64 KB

128 KB

CS/ECE 552: Memory (48)

Cache design spectrum

• Conflict misses reduced with higher associativity
• Associative search is complex, suited for smaller

caches
• Increasing associativity:

– Increases tag bits, shrinks index bits
– Increases comparator size (~ tag bits)

Placement options, Miss rate**

Complexity

Direct Mapped Fully Associative

CS/ECE 552: Memory (49)

Exact design

• How to determine:

– Number of bits for
• Index, tag and block offset

• Walkthrough example

CS/ECE 552: Memory (50)

Cache Design
• Cache size = 32 KB (CS)

• Block size = 32 B (BS)

– Frames (F) = CS/BS = 1024 (= 1K)

• Associativity = 2-way (A)

– Number of frames/way = F/A = 512

• Address-bits = 32 bits (Ad)

– Block-offset bits (b) = lg(BS) = lg(32) = 5

– Index bits (i) = lg(FpW) = lg(512) = 9

– Tag bits (t) = Ad – i – b = 32 – 9 – 5 = 18

t = 18 i = 9 b = 5

CS/ECE 552: Memory (51)

Cache Design

• Draw the cache organization

t = 18 i = 9 b = 5

CS/ECE 552: Memory (52)

4-Questions
• Q1: Where can a block be placed in the upper level?

(Block placement)

– In one of N-frames in N-way associative cache

– N = 1 => Direct mapped

– N = #frames => Fully associative

– Setindex = Blocknum (mod numsets)

• Q2: How is a block found if it is in the upper level?
(Block identification)

– Tag match (no need to examine index/block-
offset bits --- why?)

– Valid bit

CS/ECE 552: Memory (53)

Q3. Block Replacement
• Q3: Which block should be replaced on a

miss?
(Block replacement)

– Easy for Direct Mapped

– Set Associative or Fully Associative:
• Random

• LRU (Least Recently Used)

• Approximate LRU

CS/ECE 552: Memory (54)

3C Miss Classification
• Compulsory (cold start or process migration, first

reference): first access to a block
– ―Cold‖ fact of life: not much you can do about it
– Note: If you are going to run ―billions‖ of

instructions, Compulsory Misses are insignificant
• Conflict (collision):

– Multiple memory locations mapped
to the same cache location

– Solution 1: increase cache size
– Solution 2: increase associativity

• Capacity:
– Cache cannot contain all blocks access by the

program
– Solution: increase cache size

CS/ECE 552: Memory (55)

Summary and Lookahead

• Simple case : direct mapped
• Associativity: trade-offs
• Replacement
• Next:

– Write strategies
– How to design memory hierarchies?
– How does software interact with caches?
– Is programmer aware of the existence of caches?
– Can programmers benefit by being aware of

caches?

CS/ECE 552: Memory (56)

Q4. Write strategy
• Q4: What happens on a write?

(Write strategy)
• Write through—The information is written to both the block in

the cache and to the block in the lower-level memory.
• Write back—The information is written only to the block in the

cache. The modified cache block is written to main memory only
when it is replaced.
– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes
– WB: no writes of repeated writes

• WT always combined with write buffers so that don’t wait for
lower level memory

CS/ECE 552: Memory (57)

Write Buffer for Write Through

• A Write Buffer is needed between the Cache and Memory
– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if: Store frequency (w.r.t. time) << 1 / DRAM

write cycle
• Memory system designer’s nightmare:

– Store frequency (w.r.t. time) -> 1 / DRAM write cycle
– Write buffer saturation

Processor
Cache

Write Buffer

DRAM

CS/ECE 552: Memory (58)

Write Buffer Saturation

• Store frequency (w.r.t. time) > 1 / DRAM write cycle
– If this condition exist for a long period of time (CPU cycle

time too quick and/or too many store instructions in a row):
• Store buffer will overflow no matter how big you make it
• The CPU Cycle Time <= DRAM Write Cycle Time

• Solution for write buffer saturation:
– Use a write back cache
– Install a second level (L2) cache:

Processor
Cache

DRAML2

Cache

Processor
Cache

Write Buffer

DRAM

CS/ECE 552: Memory (59)

Write-miss Policy: Write Allocate versus Not Allocate
• Assume: a 16-bit write to memory location 0x0 and

causes a miss
– Do we read in the block?

• Yes: Write Allocate
• No: Write Not Allocate

Cache Index

0

1

2

3

:

Cache Data

Byte 0

:

Cache Tag Example: 0x00

Ex: 0x00

0x00

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

Byte Select

Ex: 0x00

CS/ECE 552: Memory (60)

Improving Cache Performance

• Reduce Hit time
– small and simple-> direct mapped

• Reduce miss rate
– Large cache, large blocksize, associative,

• Reduce miss penalty
– Reduce block-size

• Remember Amdahl’s law
– Common case : hit
– Reduce miss-rate at the cost of hit time

CS/ECE 552: Memory (61)

Cache design space
• Several interacting dimensions

– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

• The optimal choice is a compromise
– depends on access characteristics

• workload
• use (I-cache, D-cache, TLB)

– depends on technology / cost
• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

CS/ECE 552: Memory (62)

Practical design issues

• Split Cache vs. unified cache

• Multi-level Caches

CS/ECE 552: Memory (63)

Split caches
• One for instruction, one for data

• Split cache

– Instructions account for 75% of mem accesses

– I-missrate = 5%, D-missrate = 6%

– AMAT = (1 + 0.05*10)*0.75 + (1 + 0.06*10) * 0.25

• Unified Cache

– Aggregate missrate = 4%

– AMAT = (1 + 0.04*10) = 1.4???

– For modern pipelined processor:
• single-memory structural hazard

CS/ECE 552: Memory (64)

Multilevel Caches

• AMATL1 = hit timeL1 + miss-rateL1 * miss-penaltyL1

• What is miss-penaltyL1?
– Access time of memory

• Put in a large L2 cache between L1 and memory
– What is the miss-penaltyL1?
– AMATL2 = hit timeL2 + miss-rateL2 * miss-penaltyL2

Control

Datapath

Secondary

Storage

(Disk)

Processor

R
eg

isters

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

O
n

-C
h

ip

C
a

ch
e

Tertiary

Storage

(Disk)

CS/ECE 552: Memory (65)

Multilevel Caches

• Cycle time = 1ns (~ 1GHz clock)
• Main memory access = 100ns = 100 cycles
• L1 miss rate = 5%
• Without 2nd level cache

– AMATL1 = 1 + 5% * 100 = 6 cycles
• With 2nd level cache

– L2 miss-rate = 2% (local miss-rate)
– L2 hit time = 10 cycles
– AMATL2 = 10 + 2% * 100 = 12 cycles
– AMATL1 = 1 + 5% * 12 = 1.6

CS/ECE 552: Memory (66)

State of the Art

• 2-3 levels of SRAM cache

• Split I- and D-caches at Level 1

• 2-4-way set-associative at Level 1

• 2-8-way set-associative at higher levels

CS/ECE 552: Memory (67)

Summary
• Memory technology (Capacity/cost/speed)

• Need for hierarchy

• Performance

– AMAT, ideal vs. real CPI

• Cache management:

– Associativity, indexing, write handling, multi-word
blocks etc.

• Diagrams of arbitrary cache organizations

• Next:

– Cache-friendly coding techniques

– Virtual Memory

CS/ECE 552: Memory (68)

Error Correcting Codes (ECC)

• Low Probability of Bit Flipping X Vast Memory
• = Substantial Probability of a Few Bits Wrong

• Model
– Assume small number of random errors
– So for a single word (e.g., 64 bits)
– P(no flips) >> P(1 flip) >> P(2 flip) >> P(>2 flips)

• Actions
– Single Error Detection (Parity)
– Single Error Correction with Double Error

Detection (SECDED)
– More in Future

CS/ECE 552: Memory (69)

Naïve 1-Bit ECC

• Store 1-bit dataword {0, 1} in longer codeword

• Single Error Detection (Parity)
– Save 000, 111
– Read 000, 111, {01,10}error

• Single Error Correction
– Save 0000, 1111
– Read {000,001,010,001}0,

{111,011,101,110}1

CS/ECE 552: Memory (70)

Naïve 1-Bit ECC, cont.

• Single Error Detection with Double Error
Correction (SECDED)

– Save 00000, 11111

– Read {0000,0001,0010,0100,1000}0,
{1111,1110,1101,1011,0111}1,
{two zeros + two ones}error

• Note

– 4 bit flip between legal datawords

– Must be true for SECDED code

CS/ECE 552: Memory (71)

Hamming Distance & Code Strength

• Hamming Distance

= # bit flips between datawords

– 0011 (SED)  Hamming = 2

– 000111 (SEC)  Hamming =3

– 00001111 (SECDED)  Hamming = 4

• But 300% memory overhead?

• Build Code on Multi-bit data word

CS/ECE 552: Memory (72)

SECDED Memory Overhead

Data Bits # Check Bits Overhead

1 3 300%

8 5 63%

32 7 22%

64 8 13%

128 9 7%

n 1+log2n+a_little

CS/ECE 552: Memory (73)

ECC Process (work example on board)

• Start with dataword D
• Compute checkbits C = f(D)
• Store codeword CD
• Error(s) may occur CD’
• Read codeword CD’
• Recompute checkbits C’ = f(D’)
• Compute S = C xor C’

– S==0  return dataword D
– S!=0  correct D’ to D & return D

• Add additional parity for DED
• Works even if bit flip is in C or additional parity

CS/ECE 552: Memory (74)

Software Interaction
• RAM model of computation

– All memory accesses take the same amount of time
– Theoretical Model – has nothing to do with DRAM

• Reality:
– Caches introduce non-uniformity
– Hits take less time than misses

• Quicksort
– fastest comparison based sorting algorithm when all keys fit

in memory:
• Radixsort

– also called ―linear time‖ sort because for keys of fixed
length and fixed radix a constant number of passes over the
data is sufficient independent of the number of keys:

))lg((nn

)(n

CS/ECE 552: Memory (75)

QS vs. RS : Instructions

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)

Radix (Instr/key)

CS/ECE 552: Memory (76)

QS vs. RS : Time, Instructions

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)

Radix (Instr/key)

Quick (Clocks/key)

Radix (clocks/key)

CS/ECE 552: Memory (77)

QS vs. RS : Cache misses

• RAM model results are still valid… but at much larger input sizes
• How does one create practical, fast algorithms?
• Cache-aware programming/compilation

0

1

2

3

4

5

1000 10000 100000 1000000 1000000
0

Quick(miss/key)

Radix(miss/key)

CS/ECE 552: Memory (78)

Data Cache Performance
• Instruction Sequencing

– Loop Interchange: change nesting of loops to access data in order
stored in memory

– Loop Fusion: Combine 2 independent loops that have same looping
and some variables overlap

– Blocking: Improve temporal locality by accessing ―blocks‖ of data
repeatedly vs. going down entire columns or rows

• Data Layout
– Merging Arrays: Improve spatial locality by single array of

compound elements vs. 2 separate arrays
– Nonlinear Array Layout: Mapping 2 dimensional arrays to the linear

address space
– Pointer-based Data Structures: node-allocation

• Example walkthrough: Loop fusion, Blocking, Merging Arrays

CS/ECE 552: Memory (79)

#1 : Loop Fusion

• Coverts distant reuse
to near reuse

• Enhances temporal
locality

• Code Transformation

for(i=0;i<64;i++) {

C[i] = min(A[i] , B[i]);

}

for(i=0;i<64;i++) {

D[i] = max(A[i], B[i]);

}

for(i=0;i<64;i++) {

C[i] = min(A[i] , B[i]);

D[i] = max(A[i], B[i]);

}

CS/ECE 552: Memory (80)

#2: Array merging

• Eliminates conflicts
– Array of compound

structure vs.
– multiple arrays of

simple data
• Enhances spatial and

temporal locality
• Data layout

transformation

for(i=0;i<64;i++) {

C[i] = min(A[i] , B[i]);

}

for(i=0;i<64;i++) {

D[i] = max(A[i], B[i]);

}

Struct merge {

int A;

int B;

};

Struct merge M[64];

for(i=0;i<64;i++) {

C[i] = min(M[i].A , M[i].B);

}

for(i=0;i<64;i++) {

D[i] = max(M[i].A, M[i].B);

}

CS/ECE 552: Memory (81)

#3: Blocking (Tiling)
• Exploits re-use across loops

– Divide into pieces that fit in the
cache vs.

– Marching through whole array
• Capacity misses
• Code Transformation

for(i=0;i<64;i++) {

C[i] = min(A[i] , B[i]);

}

for(i=0;i<64;i++) {

D[i] = max(A[i], B[i]);

}

for (j=0; j<=2;j++)

{

for(i=0;i<32;i++) {

C[32*j + i] = min(A[32*j + i] , B[32*j + i]);

}

for(i=0;i<32;i++) {

D[32*j + i] = max(A[32*j+ i], B[32*j + i]);

}

}

CS/ECE 552: Memory (82)

State of the practice

• Cache friendly programming challenges

– No global view of application

– Different cache sizes

• Analyze programs after they’re written

– Find bad access patterns

– Fix them

– Rinse and repeat

CS/ECE 552: Memory (83)

Virtual Memory

• Data movement between Disk and Main memory
• We know how layers of hierarchy interact

– Cache and main memory
• Can we apply all the same techniques?

– Similarities and differences

Control

Datapath

Secondary

Storage

(Disk)

Processor

R
eg

isters

Main

Memory

(DRAM)

Second

Level

Cache

(SRAM)

O
n

-C
h

ip

C
a

ch
e

Tertiary

Storage

(Disk)

CS/ECE 552: Memory (84)

Virtual Memory
• Similarities:

– Mapping a larger address space to a smaller space

– Used for data movement between layers of the
memory hierarchy

• Differences:

– Miss-penalty : 10-100 cycles vs. ~1 million cycle

– Block size : 16-64 bytes vs. 4 KB – 8 KB

– Full associativity (But no associative search!)

– Software handling

Fundamenta

l

CS/ECE 552: Memory (85)

VM Operation

• Programs use virtual address
• The data/code resides elsewhere (physical address)

Physical addresses

Disk addresses

Virtual addresses

Address translation

CS/ECE 552: Memory (86)

VM Operation

• Assume 4KB pages
• 32-bit VA and 30-bit PA
• System responsible for translation
• E.g.

– lw $r2, 0xffffc004
– 0xffffc -> 0x20000 # VPN-> PPN translation
– PA = 0x20000004

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

CS/ECE 552: Memory (87)

VM Advantages
• Application’s view of memory

– Large: ~4GB in Pentium (32b address)
– Exclusive: Only program in memory

• System view
– Smaller: 256MB-1GB
– Multiple programs share memory
– Run in a protected manner (memory is private **)
– Address range is fixed (starts at 0x0)
– Do not bring in entire program

• Bring in relevant parts as needed
• VM reconciles these conflicting ―views‖

– Not just the classical benefits of hierarchy
– Illusion of

• speed of expensive level
• capacity and cost of cheaper level

CS/ECE 552: Memory (88)

VM Terminology

• Blocksize ~ 512B - 8KB+

– Block : Page

• Miss : Page-fault

– Fetch from disk

• Derivative properties:

– Fundamental constraint: high access
latency

CS/ECE 552: Memory (89)

Back to 4 questions
• Q1. Where does a block go?

– Fully associative
• Block offset and tag

• NO INDEX

– Why?
• AMAT = access-time + miss-rate*miss-penalty

• Miss-penalty = ~1 million cycles

• Have to minimize miss-rate

CS/ECE 552: Memory (90)

Q2. Block Identification

• Q2. Block identification
– Fully associative search??

• 30-bit physical address (1GB)
• 4 KB pages
• Number of frames = 230/212 = 218
• 512 K frames
• Compare 512 K frames in parallel??!!

– Reframe question:
• Old: Is this VA in any given frame? => Parallel

search
• New: Where is this VA? => Table lookup

– Page table

CS/ECE 552: Memory (91)

Page Table

• Virtual page number
– Tag in caches

• Physical address
– Frame-number in

caches
• PTBR

– Change value on
context switch

– Per-process page
table

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not

present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

CS/ECE 552: Memory (92)

Page table
• Where does table reside?

– Main memory

– 100% overhead?
• Each memory reference now generates two memory

references

• lw $r2,0xffff0004
– Access page table entry for 0xffff0, get PPN

– Access PPN:004

– We want to minimize main memory access!
• Page table entries can be cached like ordinary data

• But wait: You need an address to access the cache ***!!

• Special cache for Page table entries

CS/ECE 552: Memory (93)

Page Table Entries

• What does a page table entry contain

– Physical page number (18 bits)

– Access control (read/write permissions)

– Valid bit (1 bit)

– Misc
• Use bit for replacement

• Dirty bit for write-back

– ~ 4 bytes (1 word)

CS/ECE 552: Memory (94)

Size of Page Table
• What is the size of the page table for a system with

– 32 bit addresses
– 256MB physical memory
– 4KB pagesize

– Virtual pages = 232/212 = 220

– Physical pages = 228/212 = 216

– PT size (per process) = (Entry size) * (# entries)
= 4 bytes * 220 = 222 bytes = 4 MB

• # of processes? ~50 on my WinXP Pro machine
– 200 MB for page tables?
– ―Big government‖ : 80% consumed for administration!!
– Techniques to reduce overhead

• Gradual growing
• Inverted PT : entries per physical page

CS/ECE 552: Memory (95)

Replacement
• Q3. Block replacement

– LRU and/or LRU approximation (NRU with
reference/use bits)

– Sophisticated mechanisms possible (handling in
software)

• Page-fault : Exception
– Save instruction that causes fault
– OS service the fault, i.e., brings in the relevant

page from disk (VA-> disk address??)
– OS knows service is slow; schedule other program
– When disk access is complete
– Restart at offending instruction

CS/ECE 552: Memory (96)

Write handling

• Q4. What happens on a write

– Write-through or write-back?

CS/ECE 552: Memory (97)

Faster Translation

• Recall: 100% overhead with VM system
• Eliminate memory access for translation

– Caching
– Translation lookaside buffer (TLB)

• Also DTB in some literature
• A cache of translations

– 64-128 entries
• Covers 256 KB ~512 KB

– Organization
• 64 entry fully associative
• 256 entry, 16-way set associative

CS/ECE 552: Memory (98)

Translation Lookaside Buffer

Valid

1

1

1

1

0

1

1

0

1

1

0

1

Page table

Physical page

addressValid

TLB

1

1

1

1

0

1

Tag

Virtual page

number

Physical page

or disk address

Physical memory

Disk storage

CS/ECE 552: Memory (99)

TLB+Cache

• Cache operation

– With
physical
addresses

– Translation
on critical
path

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte

offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

CS/ECE 552: Memory (100)

Memory Access Critical path
• Why use physical addresses?

– Use virtual addresses
– Faster : no translation
– Block may have a different (still unique) tag

and index
• Who cares where the block resides in the

cache?

• Synonyms
– Two virtual pages map to same physical

page
– Should not be replicated in cache

CS/ECE 552: Memory (101)

Memory Access Critical Path

• Twist in the tale

– Virtual-index

– Physical tags

– Indexing and translation proceeds in
parallel

– Tag comparison after translation

CS/ECE 552: Memory (102)

Putting it all together

• Memory access flowchart

Yes

Deliver data

to the CPU

Write?

Try to read data

from cache

Write data into cache,

update the tag, and put

the data and the address

into the write buffer
Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss

exception

No

YesNo

YesNo

Write access

bit on?

YesNo

Write protection

exception

Physical address

CS/ECE 552: Memory (103)

Summary

• 4Q on VM
– Placement : fully associative
– Identification : Page Table lookup
– Replacement : LRU / LRU-approx
– Writes : Writeback

• 4Q on TLB
– Placement: small and fully associative, larger and

set-associative
– Identification: Associative search (CAM)
– Replacement : random
– Writes : ?? Writes to TLB??

CS/ECE 552: Memory (104)

VM Miscellanea
• TLB: cache of VA-> translations

• Single TLB is a structural hazard too !

• On a context switch:

– Change contents of PTBR for appropriate
page table

– What do we do with TLB contents?
• Flush all entries

– Simple, but inefficient

• Associate Process ID with address
– Flush required only when processor IDs are reused

CS/ECE 552: Memory (105)

VM Miscellanea
• Memory efficiency of page tables

– Limit register
• Only region between PTBR and Limit is valid
• Grow as needed

– Segmented
• Two page tables and two limit registers (Stack and Heap)

– Inverted Page table
• Hashing to map VA to a number within PA range

– Hash 32-bit VA to 28 bit PA
– Lookup complications
– Collision

– Multilevel page tables
– Paging page tables

CS/ECE 552: Memory (106)

Real Machines

• DEC Alpha 21364 (1.2 GHz)

– L1: 64K, 2-way, I&D split
• 3 cycles hit latency

• 2 memops per cycle (upto 4 insts per cycle)

– L2: 1.5M, 6-way
• 12 cycle hit latency

– System interface, 80 cycle latency

– Multilevel page tables

CS/ECE 552: Memory (107)

Real Stuff

Characteristic Pentium Pro PowerPC

VA 32 bit 52 bit

PA 32 bit 32 bit

Page size 4KB, 4MB 4KB, selectable, 256 MB

TLB Split I&D

4-way assoc

Pseudo-random

I-32, D-64

TLB miss H/W

Split I&D

2-way assoc

LRU

I-128, D-128

TLB miss H/W

CS/ECE 552: Memory (108)

Real Stuff

Characteristic Pentium Pro PowerPC

Cache Split I & D Split I & D

Size 8K + 8K 16K + 16K

Associativity 4-way 4-way

Replacement Approx LRU LRU

Block 32 bytes 32 bytes

Write Write-back Writeback or
writethrough

