- 1. <Verilog>
- 2. <Verilog>
- 3. The program is compiled into an assembly language program, which is then assembled into a machine language program.
- 4. .
- a. 1280 * 1024 pixels = 1,310,720 pixels => 1,310,720 * 3 = 3,932,160 bytes/frame.
- b. 3,932,160 bytes * (8 bits/byte) /100x10⁶ bits/second = 0.31 seconds
- 5. addi f, h, -5 add f, f, g
- 6. f = g + h + I;
- 7. sub \$t0, \$s3, \$s4 add \$t0, \$s6, \$t0 lw \$t1, 16(\$t0) sw \$t1, 32(\$s7)
- 8. **r-type**, add \$s0, \$s0, \$s0
- 9. i-type, 0xAD490020
- 10.r-type sub \$v1, \$v1, \$v0 0x00621822
- 11.i-type 1w \$v0, 4(\$at) 0x8C220004
- 12. opcode would be 8 bits, rs, rt, rd fields would be 7 bits each

opcode would be 8 bits, rs and rt fields would be 7 bits each

more registers \rightarrow more bits per instruction \rightarrow could increase code size more registers \rightarrow less register spills \rightarrow less instructions more instructions \rightarrow more appropriate instruction \rightarrow decrease code size more instructions \rightarrow larger opcodes \rightarrow larger code size

```
13. 0xBABEFEF8
0xAAAAAAA0
0x00005545
```

14. I-type

```
addi $t2, $t2, -1 beq $t2, $0, loop
```

15. 20

```
i = 10;
while( i > 0 ) {
    B += 2;
    --I;
}
```

5N + 2 instructions