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Today 

• Review representations (252/352 recap) 

• Floating point 

• Addition: Ripple carry adder, carry-look-

ahead adder 

• Barrel Shifter 

• Multiplication: Simple and Radix-4  

• Division: Simple and Newton-Raphson 

• Floating point: Addition, multiplication 



Unsigned integer representation 



Binary to Decimal conversion 



Binary to Decimal conversion 



Binary to Decimal conversion (8 bits) 



Binary to Decimal conversion (8 bits) 



Decimal to Binary 



Number of bits required 



Number of bits required 



Decimal to Binary 

Bit position Power of 2 Number >= Remainder Bit value 

5 32 52 Yes 20 1 

4 16 20 Yes 4 1 

3 8 4 No 4 0 

2 4 4 Yes 0 1 

1 2 0 No 0 0 

0 1 0 No 0 0 



We can check 



Decimal to Binary 

Bit position Power of 2 Number >= Remainder Bit value 

5 32 37 Yes 5 1 

4 16 5 No 5 0 

3 8 5 No 5 0 

2 4 5 Yes 1 1 

1 2 1 No 0 0 

0 1 1 Yes 0 1 

37; # bits = 6 

Bit positions start at 0 



We can check 



Decimal to Binary 

Bit position Power of 2 Number >= Remainder Bit value 

5 32 37 Yes 5 1 

4 16 5 No 5 0 

3 8 5 No 5 0 

2 4 5 Yes 1 1 

1 2 1 No 0 0 

0 1 1 Yes 0 1 

37; # bits = 6 

Bit positions start at 0 



2’s complement representation 



2’s complement range 

1 bit This is weird: -1 to 0 

2 bits -2 To  +1 

3 bits -4 To  +3 

4 bits -8 To 7 

5 bits -16 To 15 

6 bits -32 To 31 

7 bits -64 To 63 

8 bits -128 To 127 

9 bits -256 To 255 

10 bits -512 To  511 



Decimal to Binary (2’s comp) 



Decimal to Binary 

• 52 

1.# bits = 7 

2.Positive number; 0110100 

All 7 bits. 

Note that the MSB 

will always be zero in 

this step 



Decimal to Binary 

• -52 

1.# bits = 7 

2.Negative number 

a) Representation of +52 =  0110100 
 
 

b) Invert all bits:                    1001011 

c) Add +1:                           +0000001 
                    =1001100 

All 7 bits. 

Note that the MSB will 

always be zero in this 

intermediate step 

All 7 bits. Note that the MSB will 

always be ONE for negative 

numbers at the very end 



Decimal to Binary 

• -101 

1.# bits = 8 

2.Negative number 

a) Representation of +101 =  01100101 
 
 

b) Invert all bits:                     10011010 

c) Add +1:                            +00000001 
                                        =10011011 

All 7 bits. 

Note that the MSB 

will always be zero in 

this step 

All 7 bits. Note that the MSB will 

always be ONE for negative 

numbers at the very end 



Decimal to Binary 

• -64 

1.# bits = 7 

2.Negative number 

a) Representation of +64 =  1000000 
 
 

b) Invert all bits:                    0111111 

c) Add +1:                           +0000001 
                    =1000000 

All 7 bits. 

Note that the MSB will 

always be zero in this 

intermediate step 

All 7 bits. Note that the MSB will 

always be ONE for negative 

numbers at the very end 



2’s complement binary to 

decimal 
• If MSB is 0, same as unsigned 

• If MSB is 1, reverse steps: 

a) Invert all bits 

b) Add +1 

c) Now determine magnitude 

Remember it is a negative number 



2’s complement Binary to 

decimal 



2’s complement Binary to 

decimal 



2’s complement arithmetic 

It’s bitwise addition! 
• 52 + (-101) = -49 

 00110100 

+10011011 

 11001111 

  

• Let’s check what this value is 

 

 



Check value 



2’s complement extension 

• -52 in 7 bits 

• -52 in 8 bits 

• -52 in 9 bits 

• -52 in 10 bits 

 



2’s complement extension 

• -52                        7 bits        8bits         9 bits 

a) Representation of +52 = 0110100 00110100 000110100 
 
 

b) Invert all bits:               1001011 11001011 111001011 

c) Add +1:                  +0000001       +1        +1 
                         =1001100 11001100 111001100 



Extension rule: 2s complement 

  1001100     7 bits 

 11001100     8 bits 

111001100     9 bits 

 

 

• To take a number represented in X bits 

can get its representation in Y bits, (Y > 

X), copy the MSB into the “new” bit 

positions 



Fixed point 

• After the decimal point negative powers of 2 

• 0.001 



Conversion from binary to 

decimal 
• 0.43 

Power of 2 Weight Number >= Remainder Bit value

2 0.5 0.43 No 0.43 0

4 0.25 0.43 Yes 0.18 1

8 0.125 0.18 Yes 0.055 1

16 0.0625 0.055 No 0.055 0

32 0.03125 0.055 Yes 0.02375 1

64 0.015625 0.02375 Yes 0.008125 1

128 0.0078125 0.008125 Yes 0.0003125 1

Represented 

value 0.4296875



Power of 2 Weight Number >= Remainder Bit value

2 0.5 0.17 No 0.17 0

4 0.25 0.17 No 0.17 0

8 0.125 0.17 Yes 0.045 1

16 0.0625 0.045 No 0.045 0

32 0.03125 0.045 Yes 0.01375 1

64 0.015625 0.01375 No 0.01375 0

128 0.0078125 0.01375 Yes 0.0059375 1

Represented 

value 0.1640625



Power of 2 Weight Number >= Remainder Bit value

2 0.5 0.14 No 0.14 0

4 0.25 0.14 No 0.14 0

8 0.125 0.14 Yes 0.015 1

16 0.0625 0.015 No 0.015 0

32 0.03125 0.015 No 0.015 0

64 0.015625 0.015 No 0.015 0

128 0.0078125 0.015 Yes 0.0071875 1

Represented 

value 0.1328125



Power of 2 Weight Number >= Remainder Bit value

2 0.5 0.09 No 0.09 0

4 0.25 0.09 No 0.09 0

8 0.125 0.09 No 0.09 0

16 0.0625 0.09 Yes 0.0275 1

32 0.03125 0.0275 No 0.0275 0

64 0.015625 0.0275 Yes 0.011875 1

128 0.0078125 0.011875 Yes 0.0040625 1

Represented 

value 0.0859375



Power of 2 Weight Number >= Remainder Bit value

2 0.5 0.01 No 0.01 0

4 0.25 0.01 No 0.01 0

8 0.125 0.01 No 0.01 0

16 0.0625 0.01 No 0.01 0

32 0.03125 0.01 No 0.01 0

64 0.015625 0.01 No 0.01 0

128 0.0078125 0.01 Yes 0.0021875 1

Represented 

value 0.0078125



Power of 2 Weight Number >= Remainder Bit value

2 0.5 0.01 No 0.01 0

4 0.25 0.01 No 0.01 0

8 0.125 0.01 No 0.01 0

16 0.0625 0.01 No 0.01 0

32 0.03125 0.01 No 0.01 0

64 0.015625 0.01 No 0.01 0

128 0.0078125 0.01 Yes 0.0021875 1

256 0.00390625 0.002188 No 0.0021875 0

512 0.001953125 0.002188 Yes 0.000234375 1

Represented 

value 0.009765625



Various conversions 

• 1001001  

• Decimal value interpreted as unsigned 

representation? 

• Decimal value interpreted as 2’s 

complement representation? 

• 0.1001001 = ? 

 

 



Floating point 

• Allows representing very large and very small 
numbers 

• Standard used in all machines today 
– Much interesting theory behind it 

• It is equivalent to scientific notation but done in 
binary.  

• Think: 
– 0.145 = +1.45 * 10-2  

– 0.0090897 = +9.0897 * 10-3 

– -145 = -1.45 * 10+2  

• How do we do this with binary? 
 



Floating Point Standard 

IEEE-754 Standard 

Single-Precision Representation 

S Exponent Fraction 

1 bit          8 bits                   23 bits 



Example 

CORRECTION: N should be -6.25 



Example 2 

CORRECTION: S = 0; therefore positive number 

All the −𝟏𝟏 should be  −𝟏𝟎 



Example 3 

CORRECTION: fraction is missing another 1 at the right 



Special cases 
http://blogs.msdn.com/b/premk/archive/2006/02/25/539198.aspx 



Today 

• Review representations (252/352 recap) 

• Floating point 

• Addition: Ripple carry adder, carry-

look-ahead adder 

• Barrel Shifter 

• Multiplication: Simple and Radix-4  

• Division: Simple and Newton-Raphson 

• Floating point: Addition, multiplication 



Full adder 

• Three inputs and two outputs 
• Cout, s = F(a,b,Cin) 

– Cout : only if at least two inputs are set 
– S : only if exactly one input or all three inputs are set 

• Logic? 

Cout 

s 

a 

b 

Cin 

a 

b 

Cin 

a 

b 

Cin 

a 

b 

Cin 

a 

b 

a 

Cin 

Cin 

b 



Subtract 
• A - B = A + (– B) 

– form two complement by invert and add 
one 

A 

B 

1-bit 

Full 

Adder 

CarryOut 

M
u

x
 

CarryIn 

Result 

add 

and 

or 

invert 



Ripple-carry adder 

A0 

B0 

1-bit 

ALU 
Result0 

CarryIn0 

CarryOut0 

A1 

B1 

1-bit 

ALU 
Result1 

CarryIn1 

CarryOut1 

A2 

B2 

1-bit 

ALU 
Result2 

CarryIn2 

CarryOut2 

A3 

B3 

1-bit 

ALU 
Result3 

CarryIn3 

CarryOut3 



Problem : Slow 
• Is a 32-bit ALU as fast as a 1-bit ALU? 

– Delay = 32x CP(Fast adder) + XOR 
 

• Is there more than one way to do addition? 
– two extremes:  ripple carry and sum-of-products 
– Flatten expressions to two levels 

 
Can you see the ripple?  How could you get rid of it? 

 

c1 = b0c0 + a0c0 + a0b0 
c2 = b1c1 + a1c1 + a1b1 
c3 = b2c2 + a2c2 + a2b2   
c4 = b3c3 + a3c3 + a3b3  

 

c2 = b1(b0c0 + a0c0 + a0b0) + a1(b0c0 + a0c0 + a0b0) + a1b1 
c2 = b1b0c0 + b1a0c0 + b1a0b0 + a1b0c0 + a1a0c0 + a1a0b0 + a1b1 
c3 = ? 

c31 = ? Not feasible!  Why? Exponential fanin 



Carry look-ahead 

• An approach in-between our two extremes 

• Motivation:  

–  If we didn't know the value of carry-in, what 
could we do? 

– When would we always generate a carry? 

•gi = ai bi  

– When would we propagate the carry? 

•pi = ai + bi 

• Did we get rid of the ripple? 



Carry-lookahead adder 
A B C-out 

0 0 0 “kill” 

0 1 C-in “propagate” 

1 0 C-in “propagate” 

1 1 1 “generate” 

A0 

B1 

S 
G 
P 

G = A and B 

P = A xor B 
A 

B 

S 
G 
P 

A 

B 

S 
G 
P 

A 

B 

S 
G 
P 

Cin 

C1 =G0 + C0  P0 

 

C2 = G1 + G0 P1 + C0  P0  P1 

C3 = G2 + G1 P2 + G0  P1  P2 + C0  P0  P1  P2 

G 

C4 = . . . 

P 



Carry-Lookahead Adder 

• Waitaminute! 

–Nothing has changed 

– Fanin problems if you flatten!  
• Linear fanin, not exponential 

–Ripple problem if you don’t! 

• Enables divide-and-conquer 

• Figure out Generate and Propagate for 4-
bits together 

• Compute hierarchically 

 



Carry Lookahead adder 

• Height of tree = O(lg(n)) 

• 32 bit addition : k*lg(32) = k*5 

15,14,13,12 11,10,9,8 7,6,5,4 3,2,1,0 

15..8 7..0 

15...0 



Cascaded CLA 
C 

L 

A 

4-bit 

Adder 

4-bit 

Adder 

4-bit 

Adder 

C1 =G0 + C0  P0 

C2 = G1 + G0 P1 + C0  P0  P1 

C3 = G2 + G1 P2 + G0  P1  P2 + C0  P0  P1  P2 

G 

P 

G0 
P0 

C4 = . . . 

C0 



Carry-Lookahead Adder 

• Hierarchy 

– Gi, k = Gj+1,k  + Pj+1, k * Gi,j     (assume  i < j +1 
< k ) 

– Pi,k  = Pi,j * Pj+1, k 

– G0,7 = G4,7 + P4,7 * G0,3          

– P0,7  = P0,3* P4,7 

 

– G8,15 = G12,15  + P12,15 * G8,11   

–  P8,15  = P8,11 * P12, 15 

 

– G0,15 = G8,15 + P8,15 * G0,7     

– P0,15 = P0,7 * P8, 15 



Computing G’s and Ps 

• Parallel algorithm in hardware 

G12,15 P12,15 G8,11 P8,11 G4,7 P4,7 G0,3 P0,3 

G15,8 P15,8 G7,0 P7,0 

G15,0 P15,0 

g’s p’s g’s p’s g’s p’s g’s p’s 



Computing C’s 

• Different tree. 

• Note propagation order 

• Worth spending some time to think about the intricacies 

g12-g15, p12,p15 g8-g11, p8-p11 g4-g7, p4,p7 g0-g3, p0,p3 

G15,8 P15,8 G3,0 P3,0 

G0,7 P0,7 

c0 

c0 

c0 
c4 c8 

c8 

c12 



Carry-selection: Guess 

n-bit adder n-bit adder 
CP(2n) = 2*CP(n) 

n-bit adder n-bit adder n-bit adder 1 0 

Cout 

CP(2n) = CP(n) + CP(mux) 

Carry-select adder 



Overflow 
• Overflow: the result is too large (or too small) to represent 

properly 

– Example: - 8 < = 4-bit binary number <= 7 
• When adding operands with different signs, overflow cannot 

occur! 
• Overflow occurs when adding: 

– 2 positive numbers and the sum is negative 
– 2 negative numbers and the sum is positive 

• On your own: Prove you can detect overflow by: 

– Carry into MSB       Carry out of MSB 
 

0 1 1 1 

0 0 1 1 + 

1 0 1 0 

1 

1 1 0 0 

1 0 1 1 + 

0 1 1 1 

1 1 0 

7 

3 

1 

– 6 

–4 

– 5 

7 

0 





Overflow detection 
• Carry into MSB       Carry out of MSB 

– For N-bit ALU: Overflow = CarryIn[N - 1]  XOR  CarryOut[N - 
1] 

A0 

B0 

1-bit 

ALU 
Result0 

CarryIn0 

CarryOut0 

A1 

B1 

1-bit 

ALU 
Result1 

CarryIn1 

CarryOut1 

A2 

B2 

1-bit 

ALU 
Result2 

CarryIn2 

A3 

B3 

1-bit 

ALU 
Result3 

CarryIn3 

CarryOut3 

Overflow 

X Y X   XOR   Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 





Negative, Zero 
• Required for conditional branches 

• Zero 

– How? 

– NOR all 32 bits 

– Avoid 33rd bit (carry out) 

• Negative may be required on overflow 

– If (a<b) jump : jump taken if a-b is negative 

• Tempting to consider MSB 

– E.g. if (-5 < 4) branch 

– Branch should be taken, but (-5-4) computation results 
in overflow… so MSB is 0 

– E.g. if (7 < -3) branch 

– Branch should not be taken but (7- (-3)) results in 
overflow… so MSB is 1. 



Shift 
• E.g., Shift left logical for d<7:0> and 

shamt<2:0> 
– Using 2-1 muxes called Mux(select, in0, in1) 

– stage0<7:0> = Mux(shamt<0>,d<7:0>, 0 || 
d<7:1>) 

– stage1<7:0> = Mux(shamt<1>, 
stage0<7:0>, 00 || stage0<6:2>) 

– dout<7:0) = Mux(shamt<2>, stage1<7:0>, 
0000 || stage1<3:0>) 

• Other operations 

– Right shift 

– Arithmetic shifts 

– Rotate 

 



Barrel Shifter 

Stage 0 

Stage 1 

Stage 2 

shamt 0 

shamt 1 

shamt 2 

d6 d7 d0 d1 0 d0 

s07 s01 s00 

s05 s07 0 s01 0 s00 

s17 s11 s10 

s13 s17 0 s10 

dout7 dout0 

s00 s02 

s12 

s10 s14 

dout4 dout3 

0 s13 



Multiplication: Simple 

Chapter 3 — Arithmetic for Computers — 64 

Initially 0 



Multiplication: Radix-4 

 Basic idea: look at more bits at any one 

time 

 Entire courses on this.  

 This is a great set of slides: 

https://www.ece.ucsb.edu/~parhami/pres_f

older/f31-book-arith-pre-pt3.ppt 

UCSB. 
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https://www.ece.ucsb.edu/~parhami/pres_folder/f31-book-arith-pre-pt3.ppt
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Division Hardware 

Initially dividend 

Initially divisor 

in left half 



Division complex 

 Newton-Raphson adaption 

 SRT division 

 See slides at very end of this slide deck 
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Floating point Addition 

 Subtract exponents (d = Ex – Ey) 

 Align significands 
 Shift right d positions the significand of the operand with 

the smaller exponent 

 Select as the exponent of the result the largest exponent 

 Add significands and produce sign of result 

 Normalization 
 Already normalized – no action 

 Overflow (for addition): shift right the significand one bit 
position, and increment exponents by one 

 Underflow (for subtraction): shift left significand by the 
number of leading zeroes, decrement the exponent by 
same number 

 Round (according to rounding mode) 

 Determent exception and special flags 
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FP Adder Hardware 

Step 1 

Step 2 

Step 3 

Step 4 



Floating Point Multiplication 

 Multiplication of magnitudes, addition of 

exponents and generation of sign 

 Normalization 

 Rounding modes 
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Today 

• Review representations (252/352 recap) 

• Floating point 

• Addition: Ripple carry adder, carry-

look-ahead adder 

• Barrel Shifter 

• Multiplication: Simple and Radix-4  

• Division: Simple and Newton-Raphson 

• Floating point: Addition, multiplication 



Division in detail 

• All this material is completely optional 



 

T O N Y  N O W A T Z K I  

C S / E C E  7 5 5  

 

Goldschmidt Division 
And the AMD K7 Implementation 



Outline 

1. Motivation 

2. Algorithm Fundamentals (with Demo) 

3. Benefits and Drawbacks 

4. Implementation 

a. AMD K7 and Existing Multiplier 

b. Augmentations to the Multiplier 

c. Reciprocal Tables 

5. Additional Optimizations 

a. Multiply under Division 

b. Early Completion 

 

 

 



Is Division Important? 

 Spec 92:  (Assume: 3 Cycle Add/Mult, and 20 Cycle Divide) 

 
 
 
 
 
 
 
 
 
 

 [Source: S.F. Oberman and M.J. Flynn, “Design issues in division and other foating-point 
operations,” IEEE Trans.Computers,vol.46,no.2,pp.154–161,Feb. 1997.] 

 



Goldschmidt: The Idea 

 Principle 1: 

 Any factor that multiplies both the numerator and 
denominator will leave the quotient unchanged. 

 

 

 Principle 2: 

 If, through successive multiplication, you can drive the 
denominator to 1, then the new numerator will be the quotient. 

 

 

 

 

 

D

N

XD

XN






1

/

321

321 DN

XXXD

XXXN








Goldschmidt: The Idea (2) 

 How do we determine Xi? 

 (by complex Mathematical Proof) 

 

 Initial Value is reciprocal estimate 

 

 
 

 Subsequent Values: 

ii DX  2











D

1
estimate0X



Goldschmidt: Summary 

 Initialization: 

 

 Each Iteration: 

 

 

 

 Finalization: 

 

 

 Demo! 

11   iii XDD

ii DX  2

11   iii XNN

11   fff XNN

)/1(0 DestimateX  NN 0 DD 0



Properties of Goldschmidt 

 The Good: 

Quadratic Convergence 

Only 2 Multiplies Per Iteration 

Highly Parallel 

 Both Multiplies are independent. 

 The Bad: 

Need Accurate Reciprocal Lookup 

 Algorithm may fail to converge if guess is <75% or >150% of 
what it should be 

Goldschmidt Is Not Self Error-Correcting 

 

 

 

 

 



AMD K7 

 Released in 1999 

 Relatively Modern Design 
 3-Way Superscalar 

 Out of Order Processing 

 15 Stage Pipeline 

 500+ MHZ 

 Separate Floating Point / Integer 
Scheduler 

 Parts of Chip Modified: 
 Floating Point Execution Units 

(just the multiplier) 

 Floating Point Control Unit 

 

 



AMD K7 Multiplier 

 Booth Style Multiplier 

 Uses Static CMOS  

 4 Cycle Latency 

 Fully Pipelined 

 76 Bit Width 

 Local Bypassing 

 X87 and IEEE 
Compliant 
 

(Note: this pipeline is for the 
mantissa or ‘fraction’) 



AMD K7 Multiplier (2) 

 EX1: 
 Partial products generated by 

Booth 3 Algorithm 

 EX2: 
 Carry Select Tree adds partial 

products 

 Rounding Constant Added 

 Normalized twice assuming 
overflow, or no overflow. 

 EX3: 
 Final Unrounded Result 

Assimilated 

 EX4: 
 X87 Compliant Rounding 

 Result Selection 

 



Multiplier Augmentations 

 Additional Hardware: 

 Logic and Interconnect for 
Rounding 

 Calculation of Next Iterative 
Multiplier (We called it Xi) 

 Hardware Comparison 

 Estimated 10% increase in 
multiplier area to support 
division 

 Mainly Comes From… 

 Additional Flip Flops 

 Rounding Incrementer 

 State Machine 

 



State Machine 

Get Estimate of (1/D) 

Perform Numerator and 
Denominator Multiplications Iteration 1 

Iteration 2 

Iteration 3 
Calculate Quotient With 
Correct Precision 

Calculate Remainder 
Perform 
Rounding 



Standard Reciprocal Lookup 

 Reciprocal Lookup typically follows this procedure: 

1. Truncate Input Bits to Size of Table 

2. Index Into Reciprocal Table  

 

1.01101110100… 
R0 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

Table 

1.011 

1. 

2. 



Dual Table Reciprocal Lookup 

 

 Lookup table in the K7 is much cooler! 

 Uses a Novel Compression Scheme to increase the 
precision/table size. 

 Two Tables: Regular Table and Offset Table 

 Basic Concept: 

 Parallel Lookup in Both Tables, then combine (add) the 
results. 



Dual Table Lookup Implementation 

Input 
Number 

Regular Lookup Table 

Offset Lookup Table 

Results of Both 
Tables Added 

Question:  How do we determine the values in the offset table? 



Dual Table Explanation 1 

0.46

0.56

0.66

0.76

0.86

0.96

1.06

0.9 1.1 1.3 1.5 1.7 1.9 2.1

O
u

tp
u

t 
R

e
c

ip
r

o
c

a
l 

Input Number 

Reciprocal Lookup 

Conventional Lookup

32 Values in my Lookup Table 



Dual Table Explanation 2 

0.46

0.56

0.66

0.76
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Dual Table Explanation 3 

0.46

0.56

0.66

0.76

0.86

0.96

1.06

0.9 1.1 1.3 1.5 1.7 1.9 2.1

O
u

tp
u

t 
R

e
c

ip
r

o
c

a
l 

Input Number 

Reciprocal Lookup 

Conventional Lookup

Simplified Lookup

Lookup With Offsets 1

Lookup With Offsets 2

8 + 3 + 3 = 14 Values in my Table (much less) 



Example Dual Reciprocal Table 

Optimal 6 bits in, 5 bits out Bipartite Reciprocal Table 



Reciprocal Tables in AMD K7 

 Dual Table  

 Regular Table has 2^10 Entries and is 16 Bits Wide 

 Offset Table has 2^10 Entries and is 7 Bits Wide 

 Total Size: 69Kbits 

 3 Cycle Latency 

 Minimum Accuracy: 15.94 bits 



Performance 

 Latencies: 

 

 

 

 

 

 

 This is good, but we can do a couple optimizations. 

Single (23 Bits) Double (52 Bits) Extended(68) 

Iterations 1 Iterations 2 Iterations 3 Iterations 

Cycles (latency) 16 Cycles 20 Cycles 24 Cycles 

Cycles 
(throughput) 

13 Cycles 17 Cycles 21 Cycles 



Optimization 1:  Multiply Under Division  

 Problem:  The Division Controller consumes the 
multiplier during a divide.  

 This could mean large latency penalties for multiplies, even if 
they are independent of the division. 

 However, only two multiplies in pipeline at a time. 

 Solution:  Division Control Unit will notify the 
Floating Point Scheduler when there are free cycles 
available for multiplication. 

 This approach attains 80% of the performance of a 
completely non-blocking Divider. 



Optimization 2:  Early Completion 

 Problem:  If the Denominator is a power of two, we 
are doing a lot of extra work.  
 In this case, we just need to modify the exponent.  (with some 

attention to the x87 rounding rules) 

 Solution: 
 Add detection logic for power-of-2 Denominators  

 Allow division operation to complete early 

 Notify scheduler many cycles in advance when completion will 
occur 

 Using this method, all divisions by a power of two 
may complete in 11 cycles.  



Conclusions 

 Goldschmidt’s algorithm gives us a fast Divider with 
little increase in multiplier area (~10%). 

 Static power/Area/Design Time can be saved by not 
including a standalone Divider. 

 Observed that small/accurate reciprocal rom tables 
can be implemented using dual table compression. 



Backup Slides 

 



Floating Point Format 

 

 Single: 

 [Bias = 127] 

  

 Double: 

 [Bias = 1023] 

 

 

 Value = 
BiasExponentFractionsign  2].1[



Verification 

 Multiplier was verified in 2 ways: 

1. Directed Random Vectors 

 C program generates inputs whose outputs lie near rounding 
boundries 

 100,000+ Vectors tested at RTL and gate levels 

2. Formal Proof 

 Proof Based on a C language description of the Hardware 

 Each proof line coded into ACL2 Logic 

 Verified with ACL2 logic checker 

 250 Definitions, 3000 lines 



Determining the Remainder 

 Remainder is found by multiplying the Denominator 
and the Quotient, then subtracting the Numerator: 

 

 (This is actually the inverse of the remainder, but oh well. 

 In the K7 multiplier, this can be produced in one 
muliplication. 

 

NQDRemainder 



Sources of Error in K7 Goldschmidt 

 Error due to initial approximation 

 Error due to use of one’s complement, rather than 
true two’s complement in the iterations 

 Error due to using rounded results in the iteration 
multiplications 



Rounding Details 

 Rounding Modes 

 

 

 

 

 Rounding Constants 


