

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers Implementation

Today

- Review representations (252/352 recap)
- Floating point
- Addition: Ripple carry adder, carry-lookahead adder
- Barrel Shifter
- Multiplication: Simple and Radix-4
- Division: Simple and Newton-Raphson
- Floating point: Addition, multiplication

Unsigned integer representation

With n bits, max value that can be represented: 2ⁿ - 1

Binary to Decimal conversion

6 bits, so max number possible is $2^6-1 = 63$

Binary to Decimal conversion

=13

6 bits, so max number possible is $2^6-1 = 63$

Binary to Decimal conversion (8 bits)

8 bits, so max number possible is $2^8-1 = 255$

Binary to Decimal conversion (8 bits)

8 bits, so max number possible is $2^8-1 = 255$

- 1. Find number of bits required $Floor(\log_2 number) + 1$
- For each bit-position, starting from highest, Repeatedly check if number greater or equal to 2^{bit-position}, and set bit to 0 or 1 accordingly

Number of bits required

- 52: $\log_2(52) = 5.7$; floor(5.7) = 5; # bits = 6
 - Check 1: $2^6 1 \le 52$; 63 < 52 (YES)
 - Check 2: $2^5 1 > 52$; 32 > 52 (YES)
- 102: $\log_2(102) = 6.67$; floor(6.67) = 6; # bits = 7
 - Check 1: $2^7 1 \le 102$; 127 < 107 (YES)
 - Check 2: $2^6 1 > 102$; 63 > 107 (YES)
- 276: $\log_2(276) = 8.10$; floor(8.10) = 8; # bits = 9
 - Check 1: $2^9 1 \le 276$; 511 < 276 (YES)
 - Chack 2: 28 _ 1 \ 276.255 \ 276 (VEC)

Number of bits required

- 64: $\log_2(64) = 6.0$; floor(6.0) = 6; # bits = 7
 - Check 1: $2^7 1 \le 64$; 127 < 64 (YES)
 - Check 2: $2^6 1 > 64$; 63 > 64 (YES)

52; # bits = 6 Bit positions start at 0, so 6 bits means 2^0 to 2^5

Bit position	Power of 2	Number	>=	Remainder	Bit value
5	32	52	Yes	_20	1
4	16				
3	8				
2	4				
1	2				
0	1				

We can check

1 1 0 1 0 0
$$2^{5}$$
 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} 32 + 16 + 4 =52

37; # bits = 6
Bit positions start at 0

Bit position	Power of 2	Number	>=	Remainder	Bit value
5	32	37	Yes	_5	1
4	16				
3	8				
2	4				
1	2				
0	1				

We can check

=37

37; # bits = 6
Bit positions start at 0

Bit position	Power of 2	Number	>=	Remainder	Bit value
5	32	37	Yes	_5	1
4	16				
3	8				
2	4				
1	2				
0	1				

2's complement representation

- Allows representing negative numbers
- Arithmetic operations can be done by operating on individual bits
- 0 is always all bits 0
- Most negative number: -2^{n-1}
- Most positive number: $+2^{n-1}-1$

2's complement range

1 bit	This is weird: -1 to 0				
2 bits	-2	То	+1		
3 bits	-4	То	+3		
4 bits	-8	То	7		
5 bits	-16	То	15		
6 bits	-32	То	31		
7 bits	-64	То	63		
8 bits	-128	То	127		
9 bits	-256	То	255		
10 bits	-512	То	511		

Decimal to Binary (2's comp)

- First get number of bits
 Floor(log₂ abs(number)) + 2
- If positive number, then use process we developed before and you are done
- If negative number,
 - First get representation of the absolute value
 - Then invert all bits
 - Then add +1 to the inverted bits

- 52
- 1.# bits = 7
- 2. Positive number; 0110100

All 7 bits.

Note that the MSB
will always be zero in
this step

- -52
- 1.# bits = 7
- 2. Negative number
 - a) Representation of +52 = 0110100

- b) Invert all bits:
- c) Add +1:

1001011

+0000001

=1001100

All 7 bits. Note that the MSB will always be **ONE for negative** numbers at the very end

All 7 bits.

Note that the MSB will always be zero in this intermediate step

- -101
- 1.# bits = 8
- 2. Negative number
 - a) Representation of +101 = 01100101

- b) Invert all bits:
- c) Add +1:

10011010

+00000001

*=*10011011

All 7 bits. Note that the MSB will always be **ONE for negative** numbers at the very end

All 7 bits.

Note that the MSB will always be zero in this step

- -64
- 1.# bits = 7
- 2. Negative number
 - a) Representation of +64 = 1000000

- b) Invert all bits:
- c) Add +1:

0111111

+0000001

=1000000

All 7 bits. Note that the MSB will always be **ONE for negative** numbers at the very end

All 7 bits.

Note that the MSB will always be zero in this intermediate step

2's complement binary to decimal

- If MSB is 0, same as unsigned
- If MSB is 1, reverse steps:
 - a) Invert all bits
 - b) Add +1
 - c) Now determine magnitude Remember it is a negative number

2's complement Binary to decimal

- 1001100
- MSB is 1
 - a) Invert all bits: 0110011
 - b) Add +1: +000001 0110100

26 25 24 23 22 21 20

$$= 32+16+4 = 52$$

c) -52

2's complement Binary to decimal

- 10011011
- MSB is 1
 - a) Invert all bits: 01100100
 - b) Add +1: +00000001 01100101

 $2^7 \ 2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0$

$$= 64+32+4+1 = 101$$
 c) -101

2's complement arithmetic It's bitwise addition!

•
$$52 + (-101) = -49$$

$$00110100$$

$$+10011011$$

$$11001111$$

Let's check what this value is

Check value

- 11001111
- MSB is 1

a) Invert all bits: 00110000

b) Add +1: +00000001 00110001

 $2^7 \ 2^6 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0$

= 32+16+1 = 49

c) -49

2's complement extension

- -52 in 7 bits
- -52 in 8 bits
- -52 in 9 bits
- -52 in 10 bits

- -52
- 1. # bits = 7
- 2. Negative number
 - a) Representation of +52 = 0110100

b) Invert all bits: 1001011

c) Add +1: +000001 =1001100

2's complement extension

• -52 7 bits

a) Representation of +52 = 0110100

b) Invert all bits: 1001011

c) Add +1: +000001

=1001100

Extension rule: 2s complement

1001100 7 bits 11001100 8 bits 111001100 9 bits

 To take a number represented in X bits can get its representation in Y bits, (Y > X), copy the MSB into the "new" bit positions

Fixed point

- After the decimal point negative powers of 2
- 0.001

```
1 . 1 0 1 0 2^{0} 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2 . 625
```

Conversion from binary to decimal

• 0.43

Power of 2	Weight	Number	>=	Remainder	Bit value
2	0.5	0.43	No	0.43	0
4	0.25	0.43	Yes	0.18	1
8	0.125	0.18	Yes	0.055	1
16	0.0625	0.055	No	0.055	0
32	0.03125	0.055	Yes	0.02375	1
64	0.015625	0.02375	Yes	0.008125	1
128	0.0078125	0.008125	Yes	0.0003125	1
Represented					
value	0.4296875				

Power of 2	Weight	Number	>=	Remainder	Bit value
2	0.5	0.17	No	0.17	0
4	0.25	0.17	No	0.17	0
8	0.125	0.17	Yes	0.045	1
16	0.0625	0.045	No	0.045	0
32	0.03125	0.045	Yes	0.01375	1
64	0.015625	0.01375	No	0.01375	0
128	0.0078125	0.01375	Yes	0.0059375	1
Represented					
value	0.1640625				

Power of 2	Weight	Number	>=	Remainder	Bit value
2	0.5	0.14	No	0.14	0
4	0.25	0.14	No	0.14	0
8	0.125	0.14	Yes	0.015	1
16	0.0625	0.015	No	0.015	0
32	0.03125	0.015	No	0.015	0
64	0.015625	0.015	No	0.015	0
128	0.0078125	0.015	Yes	0.0071875	1
Represented					
value	0.1328125				

Power of 2	Weight	Number	>=	Remainder	Bit value
2	0.5	0.09	No	0.09	0
4	0.25	0.09	No	0.09	0
8	0.125	0.09	No	0.09	0
16	0.0625	0.09	Yes	0.0275	1
32	0.03125	0.0275	No	0.0275	0
64	0.015625	0.0275	Yes	0.011875	1
128	0.0078125	0.011875	Yes	0.0040625	1
Represented					
value	0.0859375				

Power of 2	Weight	Number	>=	Remainder	Bit value
2	0.5	0.01	No	0.01	0
4	0.25	0.01	No	0.01	0
8	0.125	0.01	No	0.01	0
16	0.0625	0.01	No	0.01	0
32	0.03125	0.01	No	0.01	0
64	0.015625	0.01	No	0.01	0
128	0.0078125	0.01	Yes	0.0021875	1
Represented					
value	0.0078125				

Power of 2	Weight	Number	>=	Remainder	Bit value
2	0.5	0.01	No	0.01	0
4	0.25	0.01	No	0.01	0
8	0.125	0.01	No	0.01	0
16	0.0625	0.01	No	0.01	0
32	0.03125	0.01	No	0.01	0
64	0.015625	0.01	No	0.01	0
128	0.0078125	0.01	Yes	0.0021875	1
256	0.00390625	0.002188	No	0.0021875	0
512	0.001953125	0.002188	Yes	0.000234375	1
Represented					
value	0.009765625				

Various conversions

- 1001001
- Decimal value interpreted as unsigned representation?
- Decimal value interpreted as 2's complement representation?
- \bullet 0.1001001 = ?

Floating point

- Allows representing very large and very small numbers
- Standard used in all machines today
 - Much interesting theory behind it
- It is equivalent to scientific notation but done in binary.
- Think:
 - $-0.145 = +1.45 * 10^{-2}$
 - $-0.0090897 = +9.0897 * 10^{-3}$
 - $-145 = -1.45 * 10^{+2}$
- How do we do this with binary?

Floating Point Standard IEEE-754 Standard

Cinale Descision Democratetion

1 bit 8 bits 23 bits

S Exponent Fraction

- $N = -1^S * 1. fraction * 2^{exponent-127}$ when $1 \le exponent \le 254$
- $N = -1^S * 0. fraction * 2^{-126}$ when exponent == 0

Example

CORRECTION: N should be -6.25

Example 2

- **0**10000**1**011001000100000000000000000
- 0 10000101 1001000000000000000000

CORRECTION: S = 0; therefore positive number All the -1^1 should be -1^0

Example 3

```
743.5
0010 1110 0111.10
= 1.01110 0111.10 * 29
1) fraction = 011100111
2) Exponent-127=9⇒Exponent = 136
         10001000
3) Final representation
0 10001000 0111 0011 1000 0000 0000 000
```

CORRECTION: fraction is missing another 1 at the right

Special cases

http://blogs.msdn.com/b/premk/archive/2006/02/25/539198.aspx

Sign(s)	Exponent (e)	Mantissa (<i>m</i>)	Range for Single Precision values in binary	Range Name
1	1111	1000 : 11.11	_	QNaN
1	1111	0001 : 0111	_	SNaN
1	1111	0000	< -(2-2 ⁻²³) × 2 ¹²⁷	-Infinity (Negative Overflow)
1	1110 : 0001	1111 : 0000	-(2-2 ⁻²³) × 2 ¹²⁷ : -2 ⁻¹²⁶	Negative Normalized -1.m × 2 ^(e-b)
1	0000	1111 : 0001	-(1-2 ⁻²³) × 2 ⁻¹²⁶ : -2 ⁻¹⁴⁹	Negative Denormalized -0.m × 2 ^(-b+1)
_	_	_	-2 ⁻¹⁵⁰ : < -0	Negative Underflow
1	0000	0000	-0	-0
0	0000	0000	+0	+0
_	_	_	> +0 : 2 ⁻¹⁵⁰	Positive Underflow

Today

- Review representations (252/352 recap)
- Floating point
- Addition: Ripple carry adder, carrylook-ahead adder
- Barrel Shifter
- Multiplication: Simple and Radix-4
- Division: Simple and Newton-Raphson
- Floating point: Addition, multiplication

Full adder

- Three inputs and two outputs
- Cout, s = F(a,b,Cin)
 - Cout: only if at least two inputs are set
 - S: only if exactly one input or all three inputs are set
- Logic?

Subtract

- A B = A + (- B)
 - form two complement by invert and add one

Ripple-carry adder

Problem: Slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
 - Delay = 32x CP(Fast adder) + XOR
- Is there more than one way to do addition?
 - two extremes: ripple carry and sum-of-products
 - Flatten expressions to two levels

Can you see the ripple? How could you get rid of it?

```
c_1 = b_0c_0 + a_0c_0 + a_0b_0

c_2 = b_1c_1 + a_1c_1 + a_1b_1

c_3 = b_2c_2 + a_2c_2 + a_2b_2

c_4 = b_3c_3 + a_3c_3 + a_3b_3

c_2 = b_1(b_0c_0 + a_0c_0 + a_0b_0) + a_1(b_0c_0 + a_0c_0 + a_0b_0) + a_1b_1

c_2 = b_1b_0c_0 + b_1a_0c_0 + b_1a_0b_0 + a_1b_0c_0 + a_1a_0c_0 + a_1a_0b_0 + a_1b_1

c_3 = ?

c_{31} = ? Not feasible! Why? Exponential fanin
```

Carry look-ahead

- An approach in-between our two extremes
- Motivation:
 - If we didn't know the value of carry-in, what could we do?
 - When would we always generate a carry?
 - $\bullet g_i = a_i b_i$
 - When would we propagate the carry?
 - $\bullet p_i = a_i + b_i$
- Did we get rid of the ripple?

Carry-lookahead adder

Carry-Lookahead Adder

- Waitaminute!
 - Nothing has changed
 - Fanin problems if you flatten!
 - Linear fanin, not exponential
 - Ripple problem if you don't!
- Enables divide-and-conquer
- Figure out Generate and Propagate for 4bits together
- Compute hierarchically

Carry Lookahead adder

- Height of tree = O(lg(n))
- 32 bit addition : k*lg(32) = k*5

Carry-Lookahead Adder

Hierarchy

 $-P_{0.15} = P_{0.7} * P_{8.15}$

-
$$G_{i, k} = G_{j+1, k} + P_{j+1, k} * G_{i, j}$$
 (assume $i < j + 1$ $< k$)

- $P_{i, k} = P_{i, j} * P_{j+1, k}$

- $G_{0,7} = G_{4,7} + P_{4,7} * G_{0,3}$

- $P_{0,7} = P_{0,3} * P_{4,7}$

- $G_{8,15} = G_{12,15} + P_{12,15} * G_{8,11}$

- $P_{8,15} = P_{8,11} * P_{12,15}$

- $G_{0,15} = G_{8,15} + P_{8,15} * G_{0,7}$

Computing G's and Ps g's p's g's p's g's p's $G_{12,15} P_{12,15}$ G_{8,11} P_{8,11} G_{4,7} P_{4,7} $G_{0,3} P_{0,3}$ G_{15,8} P_{15,8} G_{7,0} P_{7,0} G_{15,0} P_{15,0}

Parallel algorithm in hardware

Computing C's

- Different tree.
- Note propagation order
- Worth spending some time to think about the intricacies

Carry-selection: Guess

$$CP(2n) = CP(n) + CP(mux)$$

- Overflow
 Overflow: the result is too large (or too small) to represent properly
 - Example: 8 < = 4-bit binary number <= 7</p>
- When adding operands with different signs, overflow cannot occur!
- Overflow occurs when adding:
 - 2 positive numbers and the sum is negative
 - 2 negative numbers and the sum is positive
- On your own: Prove you can detect overflow by:
 - Carry into MSB
 — Carry out of MSB

Overflow detection

- Carry into MSB ⊕ Carry out of MSB
 - For N-bit ALU: Overflow = CarryIn[N 1] XOR CarryOut[N 1]

Negative, Zero

- Required for conditional branches
- Zero
 - How?
 - NOR all 32 bits
 - Avoid 33rd bit (carry out)
- Negative may be required on overflow
 - If (a<b) jump: jump taken if a-b is negative
- Tempting to consider MSB
 - E.g. if (-5 < 4) branch
 - Branch should be taken, but (-5-4) computation results in overflow... so MSB is 0
 - E.g. if (7 < -3) branch
 - Branch should not be taken but (7- (-3)) results in overflow... so MSB is 1.

Shift

- E.g., Shift left logical for d<7:0> and shamt<2:0>
 - Using 2-1 muxes called Mux(select, in0, in1)
 - stage0 < 7:0 > = Mux(shamt < 0 > , d < 7:0 > , 0 | | d < 7:1 >)
 - stage1<7:0> = Mux(shamt<1>,
 stage0<7:0>, 00 || stage0<6:2>)
 - dout<7:0) = Mux(shamt<2>, stage1<7:0>,
 0000 || stage1<3:0>)
- Other operations
 - Right shift
 - Arithmetic shifts
 - Rotate

Barrel Shifter

Multiplication: Simple

Multiplication: Radix-4

- Basic idea: look at more bits at any one time
- Entire courses on this.
- This is a great set of slides:
 https://www.ece.ucsb.edu/~parhami/pres_f
 older/f31-book-arith-pre-pt3.ppt
 UCSB_

Division Hardware

Division complex

- Newton-Raphson adaption
- SRT division
- See slides at very end of this slide deck

Floating point Addition

- Subtract exponents (d = Ex Ey)
- Align significands
 - Shift right d positions the significand of the operand with the smaller exponent
 - Select as the exponent of the result the largest exponent
- Add significands and produce sign of result
- Normalization
 - Already normalized no action
 - Overflow (for addition): shift right the significand one bit position, and increment exponents by one
 - Underflow (for subtraction): shift left significand by the number of leading zeroes, decrement the exponent by same number
- Round (according to rounding mode)
- Determent exception and special flags

FP Adder Hardware

Floating Point Multiplication

- Multiplication of magnitudes, addition of exponents and generation of sign
- Normalization
- Rounding modes

Today

- Review representations (252/352 recap)
- Floating point
- Addition: Ripple carry adder, carrylook-ahead adder
- Barrel Shifter
- Multiplication: Simple and Radix-4
- Division: Simple and Newton-Raphson
- Floating point: Addition, multiplication

Division in detail

All this material is completely optional

Goldschmidt Division And the AMD K7 Implementation

TONY NOWATZKI CS/ECE 755

Outline

- 1. Motivation
- 2. Algorithm Fundamentals (with Demo)
- 3. Benefits and Drawbacks
- 4. Implementation
 - a. AMD K7 and Existing Multiplier
 - b. Augmentations to the Multiplier
 - c. Reciprocal Tables
 - 5. Additional Optimizations
 - a. Multiply under Division
 - b. Early Completion

Is Division Important?

Spec 92: (Assume: 3 Cycle Add/Mult, and 20 Cycle Divide)

Fig. 1. Distribution of floating point instructions.

Fig. 2. Distribution of functional unit stall time.

[Source: S.F. Oberman and M.J. Flynn, "Design issues in division and other foating-point operations," IEEE Trans.Computers,vol.46,no.2,pp.154-161,Feb. 1997.]

Goldschmidt: The Idea

• Principle 1:

 Any factor that multiplies both the numerator and denominator will leave the quotient unchanged.

$$\frac{N \times X}{D \times X} = \frac{N}{D}$$

• Principle 2:

• If, through successive multiplication, you can drive the denominator to 1, then the new numerator will be the quotient.

$$\frac{N \times X_1 \times X_2 \times X_3}{D \times X_1 \times X_2 \times X_3} = \frac{N/D}{1}$$

Goldschmidt: The Idea (2)

- How do we determine Xi?
 - o (by complex Mathematical Proof)
- Initial Value is reciprocal estimate

$$X_0 = \text{estimate}\left(\frac{1}{D}\right)$$

Subsequent Values:

$$X_i = 2 - D_i$$

Goldschmidt: Summary

• Initialization:

$$X_0 = estimate(1/D)$$
 $N_0 = N$ $D_0 = D$

• Each Iteration:

$$N_{i} = N_{i-1} \times X_{i-1}$$
 $D_{i} = D_{i-1} \times X_{i-1}$
 $X_{i} = 2 - D_{i}$

• Finalization:

$$N_f = N_{f-1} \times X_{f-1}$$

Demo!

Properties of Goldschmidt

The Good:

- Quadratic Convergence
- Only 2 Multiplies Per Iteration
- Highly Parallel
 - Both Multiplies are independent.

The Bad:

- Need Accurate Reciprocal Lookup
 - Algorithm may fail to converge if guess is <75% or >150% of what it should be
- ⊗ Goldschmidt Is Not Self Error-Correcting

AMD K7

- Released in 1999
- Relatively Modern Design
 - o 3-Way Superscalar
 - Out of Order Processing
 - o 15 Stage Pipeline
 - o 500+ MHZ
 - Separate Floating Point / Integer
 Scheduler
- Parts of Chip Modified:
 - Floating Point Execution Units (just the multiplier)
 - Floating Point Control Unit

AMD K7 Multiplier

- Booth Style Multiplier
- Uses Static CMOS
- 4 Cycle Latency
- Fully Pipelined
- 76 Bit Width
- Local Bypassing
- X87 and IEEE Compliant

(Note: this pipeline is for the mantissa or 'fraction')

AMD K7 Multiplier (2)

• EX1:

 Partial products generated by Booth 3 Algorithm

• EX2:

- Carry Select Tree adds partial products
- Rounding Constant Added
- Normalized twice assuming overflow, or no overflow.

• EX3:

- Final Unrounded Result Assimilated
- EX4:
 - X87 Compliant Rounding
 - Result Selection

Multiplier Augmentations

• Additional Hardware:

- Logic and Interconnect for Rounding
- Calculation of Next Iterative
 Multiplier (We called it Xi)

Hardware Comparison

- Estimated 10% increase in multiplier area to support division
- o Mainly Comes From...
 - Additional Flip Flops
 - Rounding Incrementer
 - **X** State Machine

State Machine

Standard Reciprocal Lookup

- Reciprocal Lookup typically follows this procedure:
- 1. Truncate Input Bits to Size of Table
- 2. Index Into Reciprocal Table

Dual Table Reciprocal Lookup

- Lookup table in the K7 is much cooler!
- Uses a Novel Compression Scheme to increase the precision/table size.
- Two Tables: Regular Table and Offset Table
- Basic Concept:
 - Parallel Lookup in Both Tables, then combine (add) the results.

Dual Table Lookup Implementation

Offset Lookup Table

Question: How do we determine the values in the offset table?

Dual Table Explanation 1

32 Values in my Lookup Table

Dual Table Explanation 2

Dual Table Explanation 3

Example Dual Reciprocal Table

Input Index Bits	Positive Part
1. <u>00 00</u> xx	0.1 1111110 1
1.00 01 xx	0.1 1101111 1
1.00 10 xx	0.1 1100001 1
1.00 11 xx	0.1 1011000 1
1.01 00 xx	0.1 1001010 1
1.01 01 xx	0.1 1000000 1
1.01 10 xx	0.1 0111000 1
1.01 11 xx	0.1 0110000 1
1.10 00 xx	0.1 0101001 1
1.10 01 xx	0.1 0100011 1
1.10 10 xx	0.1 0011100 1
1.10 11 xx	0.1 0010111 1
1.11 00 xx	0.1 0010001 1
1.11 01 xx	0.1 0001101 1
1.11 10 xx	0.1 0001000 1
1.11 11 xx	0.1 0000100 1

Input Index Bits	Negative Part
1.00×00	0.0000 0000 0
1.00×01	0.0000 0011 0
1.00×10	0.0000 0111 0
1.00×11	0.0000 1010 0
1.01×00	0.0000 0000 0
1.01×01	0.0000 0010 0
1.01×10	0.0000 0101 0
1.01×11	0.0000 0111 0
1.10×00	0.0000 0000 0
1.10×01	0.0000 0010 0
1.10×10	0.0000 0011 0
1.10 xx 11	0.0000 0101 0
1.11×00	0.0000 0000 0
1.11×01	0.0000 0010 0
1.11 xx 10	0.0000 0011 0
1.11 xx 11	0.0000 0100 0

Optimal 6 bits in, 5 bits out Bipartite Reciprocal Table

Reciprocal Tables in AMD K7

Dual Table

- o Regular Table has 2^10 Entries and is 16 Bits Wide
- o Offset Table has 2^10 Entries and is 7 Bits Wide
- Total Size: 69Kbits
- o 3 Cycle Latency
- o Minimum Accuracy: 15.94 bits

Performance

• Latencies:

	Single (23 Bits)	Double (52 Bits)	Extended(68)
Iterations	1 Iterations	2 Iterations	3 Iterations
Cycles (latency)	16 Cycles	20 Cycles	24 Cycles
Cycles (throughput)	13 Cycles	17 Cycles	21 Cycles

• This is good, but we can do a couple optimizations.

Optimization 1: Multiply Under Division

- Problem: The Division Controller consumes the multiplier during a divide.
 - This could mean large latency penalties for multiplies, even if they are independent of the division.
- However, only two multiplies in pipeline at a time.
- Solution: Division Control Unit will notify the Floating Point Scheduler when there are free cycles available for multiplication.
- This approach attains 80% of the performance of a completely non-blocking Divider.

Optimization 2: Early Completion

- Problem: If the Denominator is a power of two, we are doing a lot of extra work.
 - o In this case, we just need to modify the exponent. (with some attention to the x87 rounding rules)
- Solution:
 - Add detection logic for power-of-2 Denominators
 - Allow division operation to complete early
 - Notify scheduler many cycles in advance when completion will occur
- Using this method, all divisions by a power of two may complete in 11 cycles.

Conclusions

- Goldschmidt's algorithm gives us a fast Divider with little increase in multiplier area (~10%).
- Static power/Area/Design Time can be saved by not including a standalone Divider.
- Observed that small/accurate reciprocal rom tables can be implemented using dual table compression.

Floating Point Format

Single:[Bias = 127]

Double:

[Bias = 1023]

• Value = $sign \times [1.Fraction] \times 2^{Exponent-Bias}$

Verification

Multiplier was verified in 2 ways:

1. Directed Random Vectors

- C program generates inputs whose outputs lie near rounding boundries
- o 100,000+ Vectors tested at RTL and gate levels

2. Formal Proof

- Proof Based on a C language description of the Hardware
- Each proof line coded into ACL2 Logic
- Verified with ACL2 logic checker
- o 250 Definitions, 3000 lines

Determining the Remainder

• Remainder is found by multiplying the Denominator and the Quotient, then subtracting the Numerator:

$$Remainder = D \times Q - N$$

- o (This is actually the inverse of the remainder, but oh well.
- In the K7 multiplier, this can be produced in one muliplication.

Sources of Error in K7 Goldschmidt

- Error due to initial approximation
- Error due to use of one's complement, rather than true two's complement in the iterations
- Error due to using rounded results in the iteration multiplications

Rounding Details

Rounding Modes

Guard Bit	Rem- ainder	RN	RP (+/-)	RM (+/-)	RZ
0	=0	trunc	trunc	trunc	trunc
0	-	trunc	trunc/dec	dec/trunc	dec
0	+	trunc	inc/trunc	trunc/inc	trunc
1	= 0	RNE	inc/trunc	trunc/inc	trunc
1	-	trunc	inc/trunc	trunc/inc	trunc
1	+	inc	inc/trunc	trunc/inc	trunc

Table 3. Action table for round function

Rounding Constants

	SINGLE	DOUBLE	EXTENDED	INTERNAL
RN	(24'b0,1'b1,126'b0)	(53'b0,1'b1,97'b0)	(64'b0,1'b1,86'b0)	(68'b0,1'b1,82'b0)
RZ	151'b0	151'b0	151'b0	-
RM	(24'b0,(127(Sign)))	(53'b0,(98(Sign)))	(64'b0,(87(Sign)))	-
RP	(24'b0,(127(!Sign)))	(53'b0,(98(!Sign)))	(64'b0,(87(!Sign)))	-
LASTMUL	(25'b0,1'b1,125'b0)	(54'b0,1'b1,96'b0)	(65'b0,1'b1,85'b0)	(69'b0,1'b1,81'b0)
ITERMUL	(76'b0,1'b1,74'b0)			
BACKMUL	(!Dividend[67:0],(83(1'b1)))			