
COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

5
th

Edition

Chapter 3

Arithmetic for Computers

Implementation

Today

• Review representations (252/352 recap)

• Floating point

• Addition: Ripple carry adder, carry-look-

ahead adder

• Barrel Shifter

• Multiplication: Simple and Radix-4

• Division: Simple and Newton-Raphson

• Floating point: Addition, multiplication

Unsigned integer representation

Binary to Decimal conversion

Binary to Decimal conversion

Binary to Decimal conversion (8 bits)

Binary to Decimal conversion (8 bits)

Decimal to Binary

Number of bits required

Number of bits required

Decimal to Binary

Bit position Power of 2 Number >= Remainder Bit value

5 32 52 Yes 20 1

4 16 20 Yes 4 1

3 8 4 No 4 0

2 4 4 Yes 0 1

1 2 0 No 0 0

0 1 0 No 0 0

We can check

Decimal to Binary

Bit position Power of 2 Number >= Remainder Bit value

5 32 37 Yes 5 1

4 16 5 No 5 0

3 8 5 No 5 0

2 4 5 Yes 1 1

1 2 1 No 0 0

0 1 1 Yes 0 1

37; # bits = 6

Bit positions start at 0

We can check

Decimal to Binary

Bit position Power of 2 Number >= Remainder Bit value

5 32 37 Yes 5 1

4 16 5 No 5 0

3 8 5 No 5 0

2 4 5 Yes 1 1

1 2 1 No 0 0

0 1 1 Yes 0 1

37; # bits = 6

Bit positions start at 0

2’s complement representation

2’s complement range

1 bit This is weird: -1 to 0

2 bits -2 To +1

3 bits -4 To +3

4 bits -8 To 7

5 bits -16 To 15

6 bits -32 To 31

7 bits -64 To 63

8 bits -128 To 127

9 bits -256 To 255

10 bits -512 To 511

Decimal to Binary (2’s comp)

Decimal to Binary

• 52

1.# bits = 7

2.Positive number; 0110100

All 7 bits.

Note that the MSB

will always be zero in

this step

Decimal to Binary

• -52

1.# bits = 7

2.Negative number

a) Representation of +52 = 0110100

b) Invert all bits: 1001011

c) Add +1: +0000001
 =1001100

All 7 bits.

Note that the MSB will

always be zero in this

intermediate step

All 7 bits. Note that the MSB will

always be ONE for negative

numbers at the very end

Decimal to Binary

• -101

1.# bits = 8

2.Negative number

a) Representation of +101 = 01100101

b) Invert all bits: 10011010

c) Add +1: +00000001
 =10011011

All 7 bits.

Note that the MSB

will always be zero in

this step

All 7 bits. Note that the MSB will

always be ONE for negative

numbers at the very end

Decimal to Binary

• -64

1.# bits = 7

2.Negative number

a) Representation of +64 = 1000000

b) Invert all bits: 0111111

c) Add +1: +0000001
 =1000000

All 7 bits.

Note that the MSB will

always be zero in this

intermediate step

All 7 bits. Note that the MSB will

always be ONE for negative

numbers at the very end

2’s complement binary to

decimal
• If MSB is 0, same as unsigned

• If MSB is 1, reverse steps:

a) Invert all bits

b) Add +1

c) Now determine magnitude

Remember it is a negative number

2’s complement Binary to

decimal

2’s complement Binary to

decimal

2’s complement arithmetic

It’s bitwise addition!
• 52 + (-101) = -49

 00110100

+10011011

 11001111

• Let’s check what this value is

Check value

2’s complement extension

• -52 in 7 bits

• -52 in 8 bits

• -52 in 9 bits

• -52 in 10 bits

2’s complement extension

• -52 7 bits 8bits 9 bits

a) Representation of +52 = 0110100 00110100 000110100

b) Invert all bits: 1001011 11001011 111001011

c) Add +1: +0000001 +1 +1
 =1001100 11001100 111001100

Extension rule: 2s complement

 1001100 7 bits

 11001100 8 bits

111001100 9 bits

• To take a number represented in X bits

can get its representation in Y bits, (Y >

X), copy the MSB into the “new” bit

positions

Fixed point

• After the decimal point negative powers of 2

• 0.001

Conversion from binary to

decimal
• 0.43

Power of 2 Weight Number >= Remainder Bit value

2 0.5 0.43 No 0.43 0

4 0.25 0.43 Yes 0.18 1

8 0.125 0.18 Yes 0.055 1

16 0.0625 0.055 No 0.055 0

32 0.03125 0.055 Yes 0.02375 1

64 0.015625 0.02375 Yes 0.008125 1

128 0.0078125 0.008125 Yes 0.0003125 1

Represented

value 0.4296875

Power of 2 Weight Number >= Remainder Bit value

2 0.5 0.17 No 0.17 0

4 0.25 0.17 No 0.17 0

8 0.125 0.17 Yes 0.045 1

16 0.0625 0.045 No 0.045 0

32 0.03125 0.045 Yes 0.01375 1

64 0.015625 0.01375 No 0.01375 0

128 0.0078125 0.01375 Yes 0.0059375 1

Represented

value 0.1640625

Power of 2 Weight Number >= Remainder Bit value

2 0.5 0.14 No 0.14 0

4 0.25 0.14 No 0.14 0

8 0.125 0.14 Yes 0.015 1

16 0.0625 0.015 No 0.015 0

32 0.03125 0.015 No 0.015 0

64 0.015625 0.015 No 0.015 0

128 0.0078125 0.015 Yes 0.0071875 1

Represented

value 0.1328125

Power of 2 Weight Number >= Remainder Bit value

2 0.5 0.09 No 0.09 0

4 0.25 0.09 No 0.09 0

8 0.125 0.09 No 0.09 0

16 0.0625 0.09 Yes 0.0275 1

32 0.03125 0.0275 No 0.0275 0

64 0.015625 0.0275 Yes 0.011875 1

128 0.0078125 0.011875 Yes 0.0040625 1

Represented

value 0.0859375

Power of 2 Weight Number >= Remainder Bit value

2 0.5 0.01 No 0.01 0

4 0.25 0.01 No 0.01 0

8 0.125 0.01 No 0.01 0

16 0.0625 0.01 No 0.01 0

32 0.03125 0.01 No 0.01 0

64 0.015625 0.01 No 0.01 0

128 0.0078125 0.01 Yes 0.0021875 1

Represented

value 0.0078125

Power of 2 Weight Number >= Remainder Bit value

2 0.5 0.01 No 0.01 0

4 0.25 0.01 No 0.01 0

8 0.125 0.01 No 0.01 0

16 0.0625 0.01 No 0.01 0

32 0.03125 0.01 No 0.01 0

64 0.015625 0.01 No 0.01 0

128 0.0078125 0.01 Yes 0.0021875 1

256 0.00390625 0.002188 No 0.0021875 0

512 0.001953125 0.002188 Yes 0.000234375 1

Represented

value 0.009765625

Various conversions

• 1001001

• Decimal value interpreted as unsigned

representation?

• Decimal value interpreted as 2’s

complement representation?

• 0.1001001 = ?

Floating point

• Allows representing very large and very small
numbers

• Standard used in all machines today
– Much interesting theory behind it

• It is equivalent to scientific notation but done in
binary.

• Think:
– 0.145 = +1.45 * 10-2

– 0.0090897 = +9.0897 * 10-3

– -145 = -1.45 * 10+2

• How do we do this with binary?

Floating Point Standard

IEEE-754 Standard

Single-Precision Representation

S Exponent Fraction

1 bit 8 bits 23 bits

Example

CORRECTION: N should be -6.25

Example 2

CORRECTION: S = 0; therefore positive number

All the −𝟏𝟏 should be −𝟏𝟎

Example 3

CORRECTION: fraction is missing another 1 at the right

Special cases
http://blogs.msdn.com/b/premk/archive/2006/02/25/539198.aspx

Today

• Review representations (252/352 recap)

• Floating point

• Addition: Ripple carry adder, carry-

look-ahead adder

• Barrel Shifter

• Multiplication: Simple and Radix-4

• Division: Simple and Newton-Raphson

• Floating point: Addition, multiplication

Full adder

• Three inputs and two outputs
• Cout, s = F(a,b,Cin)

– Cout : only if at least two inputs are set
– S : only if exactly one input or all three inputs are set

• Logic?

Cout

s

a

b

Cin

a

b

Cin

a

b

Cin

a

b

Cin

a

b

a

Cin

Cin

b

Subtract
• A - B = A + (– B)

– form two complement by invert and add
one

A

B

1-bit

Full

Adder

CarryOut

M
u

x

CarryIn

Result

add

and

or

invert

Ripple-carry adder

A0

B0

1-bit

ALU
Result0

CarryIn0

CarryOut0

A1

B1

1-bit

ALU
Result1

CarryIn1

CarryOut1

A2

B2

1-bit

ALU
Result2

CarryIn2

CarryOut2

A3

B3

1-bit

ALU
Result3

CarryIn3

CarryOut3

Problem : Slow
• Is a 32-bit ALU as fast as a 1-bit ALU?

– Delay = 32x CP(Fast adder) + XOR

• Is there more than one way to do addition?
– two extremes: ripple carry and sum-of-products
– Flatten expressions to two levels

Can you see the ripple? How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0
c2 = b1c1 + a1c1 + a1b1
c3 = b2c2 + a2c2 + a2b2
c4 = b3c3 + a3c3 + a3b3

c2 = b1(b0c0 + a0c0 + a0b0) + a1(b0c0 + a0c0 + a0b0) + a1b1
c2 = b1b0c0 + b1a0c0 + b1a0b0 + a1b0c0 + a1a0c0 + a1a0b0 + a1b1
c3 = ?

c31 = ? Not feasible! Why? Exponential fanin

Carry look-ahead

• An approach in-between our two extremes

• Motivation:

– If we didn't know the value of carry-in, what
could we do?

– When would we always generate a carry?

•gi = ai bi

– When would we propagate the carry?

•pi = ai + bi

• Did we get rid of the ripple?

Carry-lookahead adder
A B C-out

0 0 0 “kill”

0 1 C-in “propagate”

1 0 C-in “propagate”

1 1 1 “generate”

A0

B1

S
G
P

G = A and B

P = A xor B
A

B

S
G
P

A

B

S
G
P

A

B

S
G
P

Cin

C1 =G0 + C0  P0

C2 = G1 + G0 P1 + C0  P0  P1

C3 = G2 + G1 P2 + G0  P1  P2 + C0  P0  P1  P2

G

C4 = . . .

P

Carry-Lookahead Adder

• Waitaminute!

–Nothing has changed

– Fanin problems if you flatten!
• Linear fanin, not exponential

–Ripple problem if you don’t!

• Enables divide-and-conquer

• Figure out Generate and Propagate for 4-
bits together

• Compute hierarchically

Carry Lookahead adder

• Height of tree = O(lg(n))

• 32 bit addition : k*lg(32) = k*5

15,14,13,12 11,10,9,8 7,6,5,4 3,2,1,0

15..8 7..0

15...0

Cascaded CLA
C

L

A

4-bit

Adder

4-bit

Adder

4-bit

Adder

C1 =G0 + C0  P0

C2 = G1 + G0 P1 + C0  P0  P1

C3 = G2 + G1 P2 + G0  P1  P2 + C0  P0  P1  P2

G

P

G0
P0

C4 = . . .

C0

Carry-Lookahead Adder

• Hierarchy

– Gi, k = Gj+1,k + Pj+1, k * Gi,j (assume i < j +1
< k)

– Pi,k = Pi,j * Pj+1, k

– G0,7 = G4,7 + P4,7 * G0,3

– P0,7 = P0,3* P4,7

– G8,15 = G12,15 + P12,15 * G8,11

– P8,15 = P8,11 * P12, 15

– G0,15 = G8,15 + P8,15 * G0,7

– P0,15 = P0,7 * P8, 15

Computing G’s and Ps

• Parallel algorithm in hardware

G12,15 P12,15 G8,11 P8,11 G4,7 P4,7 G0,3 P0,3

G15,8 P15,8 G7,0 P7,0

G15,0 P15,0

g’s p’s g’s p’s g’s p’s g’s p’s

Computing C’s

• Different tree.

• Note propagation order

• Worth spending some time to think about the intricacies

g12-g15, p12,p15 g8-g11, p8-p11 g4-g7, p4,p7 g0-g3, p0,p3

G15,8 P15,8 G3,0 P3,0

G0,7 P0,7

c0

c0

c0
c4 c8

c8

c12

Carry-selection: Guess

n-bit adder n-bit adder
CP(2n) = 2*CP(n)

n-bit adder n-bit adder n-bit adder 1 0

Cout

CP(2n) = CP(n) + CP(mux)

Carry-select adder

Overflow
• Overflow: the result is too large (or too small) to represent

properly

– Example: - 8 < = 4-bit binary number <= 7
• When adding operands with different signs, overflow cannot

occur!
• Overflow occurs when adding:

– 2 positive numbers and the sum is negative
– 2 negative numbers and the sum is positive

• On your own: Prove you can detect overflow by:

– Carry into MSB Carry out of MSB

0 1 1 1

0 0 1 1 +

1 0 1 0

1

1 1 0 0

1 0 1 1 +

0 1 1 1

1 1 0

7

3

1

– 6

–4

– 5

7

0



Overflow detection
• Carry into MSB Carry out of MSB

– For N-bit ALU: Overflow = CarryIn[N - 1] XOR CarryOut[N -
1]

A0

B0

1-bit

ALU
Result0

CarryIn0

CarryOut0

A1

B1

1-bit

ALU
Result1

CarryIn1

CarryOut1

A2

B2

1-bit

ALU
Result2

CarryIn2

A3

B3

1-bit

ALU
Result3

CarryIn3

CarryOut3

Overflow

X Y X XOR Y

0 0 0

0 1 1

1 0 1

1 1 0



Negative, Zero
• Required for conditional branches

• Zero

– How?

– NOR all 32 bits

– Avoid 33rd bit (carry out)

• Negative may be required on overflow

– If (a<b) jump : jump taken if a-b is negative

• Tempting to consider MSB

– E.g. if (-5 < 4) branch

– Branch should be taken, but (-5-4) computation results
in overflow… so MSB is 0

– E.g. if (7 < -3) branch

– Branch should not be taken but (7- (-3)) results in
overflow… so MSB is 1.

Shift
• E.g., Shift left logical for d<7:0> and

shamt<2:0>
– Using 2-1 muxes called Mux(select, in0, in1)

– stage0<7:0> = Mux(shamt<0>,d<7:0>, 0 ||
d<7:1>)

– stage1<7:0> = Mux(shamt<1>,
stage0<7:0>, 00 || stage0<6:2>)

– dout<7:0) = Mux(shamt<2>, stage1<7:0>,
0000 || stage1<3:0>)

• Other operations

– Right shift

– Arithmetic shifts

– Rotate

Barrel Shifter

Stage 0

Stage 1

Stage 2

shamt 0

shamt 1

shamt 2

d6 d7 d0 d1 0 d0

s07 s01 s00

s05 s07 0 s01 0 s00

s17 s11 s10

s13 s17 0 s10

dout7 dout0

s00 s02

s12

s10 s14

dout4 dout3

0 s13

Multiplication: Simple

Chapter 3 — Arithmetic for Computers — 64

Initially 0

Multiplication: Radix-4

 Basic idea: look at more bits at any one

time

 Entire courses on this.

 This is a great set of slides:

https://www.ece.ucsb.edu/~parhami/pres_f

older/f31-book-arith-pre-pt3.ppt

UCSB.

Chapter 3 — Arithmetic for Computers — 65

https://www.ece.ucsb.edu/~parhami/pres_folder/f31-book-arith-pre-pt3.ppt
https://www.ece.ucsb.edu/~parhami/pres_folder/f31-book-arith-pre-pt3.ppt
https://www.ece.ucsb.edu/~parhami/pres_folder/f31-book-arith-pre-pt3.ppt
https://www.ece.ucsb.edu/~parhami/pres_folder/f31-book-arith-pre-pt3.ppt
https://www.ece.ucsb.edu/~parhami/pres_folder/f31-book-arith-pre-pt3.ppt
https://www.ece.ucsb.edu/~parhami/pres_folder/f31-book-arith-pre-pt3.ppt
https://www.ece.ucsb.edu/~parhami/pres_folder/f31-book-arith-pre-pt3.ppt
https://www.ece.ucsb.edu/~parhami/pres_folder/f31-book-arith-pre-pt3.ppt
https://www.ece.ucsb.edu/~parhami/pres_folder/f31-book-arith-pre-pt3.ppt
https://www.ece.ucsb.edu/~parhami/pres_folder/f31-book-arith-pre-pt3.ppt

Chapter 3 — Arithmetic for Computers — 66

Division Hardware

Initially dividend

Initially divisor

in left half

Division complex

 Newton-Raphson adaption

 SRT division

 See slides at very end of this slide deck

Chapter 3 — Arithmetic for Computers — 67

Floating point Addition

 Subtract exponents (d = Ex – Ey)

 Align significands
 Shift right d positions the significand of the operand with

the smaller exponent

 Select as the exponent of the result the largest exponent

 Add significands and produce sign of result

 Normalization
 Already normalized – no action

 Overflow (for addition): shift right the significand one bit
position, and increment exponents by one

 Underflow (for subtraction): shift left significand by the
number of leading zeroes, decrement the exponent by
same number

 Round (according to rounding mode)

 Determent exception and special flags

Chapter 3 — Arithmetic for Computers — 68

Chapter 3 — Arithmetic for Computers — 69

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Floating Point Multiplication

 Multiplication of magnitudes, addition of

exponents and generation of sign

 Normalization

 Rounding modes

Chapter 3 — Arithmetic for Computers — 70

Chapter 3 — Arithmetic for

Computers — 71

Today

• Review representations (252/352 recap)

• Floating point

• Addition: Ripple carry adder, carry-

look-ahead adder

• Barrel Shifter

• Multiplication: Simple and Radix-4

• Division: Simple and Newton-Raphson

• Floating point: Addition, multiplication

Division in detail

• All this material is completely optional

T O N Y N O W A T Z K I

C S / E C E 7 5 5

Goldschmidt Division
And the AMD K7 Implementation

Outline

1. Motivation

2. Algorithm Fundamentals (with Demo)

3. Benefits and Drawbacks

4. Implementation

a. AMD K7 and Existing Multiplier

b. Augmentations to the Multiplier

c. Reciprocal Tables

5. Additional Optimizations

a. Multiply under Division

b. Early Completion

Is Division Important?

 Spec 92: (Assume: 3 Cycle Add/Mult, and 20 Cycle Divide)

 [Source: S.F. Oberman and M.J. Flynn, “Design issues in division and other foating-point
operations,” IEEE Trans.Computers,vol.46,no.2,pp.154–161,Feb. 1997.]

Goldschmidt: The Idea

 Principle 1:

 Any factor that multiplies both the numerator and
denominator will leave the quotient unchanged.

 Principle 2:

 If, through successive multiplication, you can drive the
denominator to 1, then the new numerator will be the quotient.

D

N

XD

XN






1

/

321

321 DN

XXXD

XXXN






Goldschmidt: The Idea (2)

 How do we determine Xi?

 (by complex Mathematical Proof)

 Initial Value is reciprocal estimate

 Subsequent Values:

ii DX  2











D

1
estimate0X

Goldschmidt: Summary

 Initialization:

 Each Iteration:

 Finalization:

 Demo!

11   iii XDD

ii DX  2

11   iii XNN

11   fff XNN

)/1(0 DestimateX  NN 0 DD 0

Properties of Goldschmidt

 The Good:

Quadratic Convergence

Only 2 Multiplies Per Iteration

Highly Parallel

 Both Multiplies are independent.

 The Bad:

Need Accurate Reciprocal Lookup

 Algorithm may fail to converge if guess is <75% or >150% of
what it should be

Goldschmidt Is Not Self Error-Correcting

AMD K7

 Released in 1999

 Relatively Modern Design
 3-Way Superscalar

 Out of Order Processing

 15 Stage Pipeline

 500+ MHZ

 Separate Floating Point / Integer
Scheduler

 Parts of Chip Modified:
 Floating Point Execution Units

(just the multiplier)

 Floating Point Control Unit

AMD K7 Multiplier

 Booth Style Multiplier

 Uses Static CMOS

 4 Cycle Latency

 Fully Pipelined

 76 Bit Width

 Local Bypassing

 X87 and IEEE
Compliant

(Note: this pipeline is for the
mantissa or ‘fraction’)

AMD K7 Multiplier (2)

 EX1:
 Partial products generated by

Booth 3 Algorithm

 EX2:
 Carry Select Tree adds partial

products

 Rounding Constant Added

 Normalized twice assuming
overflow, or no overflow.

 EX3:
 Final Unrounded Result

Assimilated

 EX4:
 X87 Compliant Rounding

 Result Selection

Multiplier Augmentations

 Additional Hardware:

 Logic and Interconnect for
Rounding

 Calculation of Next Iterative
Multiplier (We called it Xi)

 Hardware Comparison

 Estimated 10% increase in
multiplier area to support
division

 Mainly Comes From…

 Additional Flip Flops

 Rounding Incrementer

 State Machine

State Machine

Get Estimate of (1/D)

Perform Numerator and
Denominator Multiplications Iteration 1

Iteration 2

Iteration 3
Calculate Quotient With
Correct Precision

Calculate Remainder
Perform
Rounding

Standard Reciprocal Lookup

 Reciprocal Lookup typically follows this procedure:

1. Truncate Input Bits to Size of Table

2. Index Into Reciprocal Table

1.01101110100…
R0

R1

R2

R3

R4

R5

R6

R7

Table

1.011

1.

2.

Dual Table Reciprocal Lookup

 Lookup table in the K7 is much cooler!

 Uses a Novel Compression Scheme to increase the
precision/table size.

 Two Tables: Regular Table and Offset Table

 Basic Concept:

 Parallel Lookup in Both Tables, then combine (add) the
results.

Dual Table Lookup Implementation

Input
Number

Regular Lookup Table

Offset Lookup Table

Results of Both
Tables Added

Question: How do we determine the values in the offset table?

Dual Table Explanation 1

0.46

0.56

0.66

0.76

0.86

0.96

1.06

0.9 1.1 1.3 1.5 1.7 1.9 2.1

O
u

tp
u

t
R

e
c

ip
r

o
c

a
l

Input Number

Reciprocal Lookup

Conventional Lookup

32 Values in my Lookup Table

Dual Table Explanation 2

0.46

0.56

0.66

0.76

0.86

0.96

1.06

0.9 1.1 1.3 1.5 1.7 1.9 2.1

O
u

tp
u

t
R

e
c

ip
r

o
c

a
l

Input Number

Reciprocal Lookup

Conventional Lookup

Simplified Lookup

Dual Table Explanation 3

0.46

0.56

0.66

0.76

0.86

0.96

1.06

0.9 1.1 1.3 1.5 1.7 1.9 2.1

O
u

tp
u

t
R

e
c

ip
r

o
c

a
l

Input Number

Reciprocal Lookup

Conventional Lookup

Simplified Lookup

Lookup With Offsets 1

Lookup With Offsets 2

8 + 3 + 3 = 14 Values in my Table (much less)

Example Dual Reciprocal Table

Optimal 6 bits in, 5 bits out Bipartite Reciprocal Table

Reciprocal Tables in AMD K7

 Dual Table

 Regular Table has 2^10 Entries and is 16 Bits Wide

 Offset Table has 2^10 Entries and is 7 Bits Wide

 Total Size: 69Kbits

 3 Cycle Latency

 Minimum Accuracy: 15.94 bits

Performance

 Latencies:

 This is good, but we can do a couple optimizations.

Single (23 Bits) Double (52 Bits) Extended(68)

Iterations 1 Iterations 2 Iterations 3 Iterations

Cycles (latency) 16 Cycles 20 Cycles 24 Cycles

Cycles
(throughput)

13 Cycles 17 Cycles 21 Cycles

Optimization 1: Multiply Under Division

 Problem: The Division Controller consumes the
multiplier during a divide.

 This could mean large latency penalties for multiplies, even if
they are independent of the division.

 However, only two multiplies in pipeline at a time.

 Solution: Division Control Unit will notify the
Floating Point Scheduler when there are free cycles
available for multiplication.

 This approach attains 80% of the performance of a
completely non-blocking Divider.

Optimization 2: Early Completion

 Problem: If the Denominator is a power of two, we
are doing a lot of extra work.
 In this case, we just need to modify the exponent. (with some

attention to the x87 rounding rules)

 Solution:
 Add detection logic for power-of-2 Denominators

 Allow division operation to complete early

 Notify scheduler many cycles in advance when completion will
occur

 Using this method, all divisions by a power of two
may complete in 11 cycles.

Conclusions

 Goldschmidt’s algorithm gives us a fast Divider with
little increase in multiplier area (~10%).

 Static power/Area/Design Time can be saved by not
including a standalone Divider.

 Observed that small/accurate reciprocal rom tables
can be implemented using dual table compression.

Backup Slides

Floating Point Format

 Single:

 [Bias = 127]

 Double:

 [Bias = 1023]

 Value =
BiasExponentFractionsign  2].1[

Verification

 Multiplier was verified in 2 ways:

1. Directed Random Vectors

 C program generates inputs whose outputs lie near rounding
boundries

 100,000+ Vectors tested at RTL and gate levels

2. Formal Proof

 Proof Based on a C language description of the Hardware

 Each proof line coded into ACL2 Logic

 Verified with ACL2 logic checker

 250 Definitions, 3000 lines

Determining the Remainder

 Remainder is found by multiplying the Denominator
and the Quotient, then subtracting the Numerator:

 (This is actually the inverse of the remainder, but oh well.

 In the K7 multiplier, this can be produced in one
muliplication.

NQDRemainder 

Sources of Error in K7 Goldschmidt

 Error due to initial approximation

 Error due to use of one’s complement, rather than
true two’s complement in the iterations

 Error due to using rounded results in the iteration
multiplications

Rounding Details

 Rounding Modes

 Rounding Constants

