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1.  Introduction

Whenever data is stored or transmitted, there is some chance that one or more bits will “flip” -- that 
is, will change to an incorrect value. Such incorrect values are called errors; they may be due to a 
permanent fault (broken hardware) or a transient condition.  Transient or soft errors often occur 
when storing data in DRAM or transmitting a packet across a network connection. As transistors 
shrink, errors are becoming much more common; in a modern chip the devices are so small that 
cosmic rays or alpha particles can change the value of bits that are stored in SRAM or registers, or 
are simply moving across the die.

To counteract this problem and ensure reliable operation, error correcting codes (ECC) are used. 
Extra bits are sent or stored alongside the data bits to provide redundant information. With enough 
bits of carefully chosen redundant information, we can detect or correct the most probable classes 
of errors.

A trivial example of redundant information would be to simply send an additional copy of each bit. If 
there is a single error (one or the other bit is wrong), we can detect it (because the two bits no 
longer match). But this code has two disadvantages: it has a high overhead (100%), and it does not 
allow error correction because it does not tell us which of the two bits is wrong.

A commonly used code is parity. One extra bit is used with a group of data bits; this "parity bit" is set 
such that the total number of "1" bits is odd. (This is called "odd parity"; another code is "even 
parity" in which the total number of "1" bits is even.) This code has a low overhead for a reasonable 
size of data word, and it allows detection of any one error; but it still does not allow correction.

One of the commonest error correcting codes is the SECDED code; this stands for "Single Error 
Correction, Double Error Detection". We shall see below how to create the logic for such a code.

2.  Hamming Distance

First, we need a few definitions.

The data bits are the original bits we want to protect.
The check bits are the extra bits that we send or store alongside the data bits.
The codeword is the entire set of data bits and check bits.
A valid codeword is one where the check bits are correctly generated from the data bits according to 
the rules of the code.

The Hamming distance between two words is the number of bits that are different between the two 
words. For example, "001" and "011" have a Hamming distance of one, because only the middle bit 
is different. "00111" and "01000" have a Hamming distance of four.

The minimum Hamming distance between any two valid codewords in a code determines how many 
errors may be detected or corrected using that code.

For example, if the minimum Hamming distance is one, then it is possible for a single bit error to 
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make one valid codeword into another valid codeword, so it is not possible in general to detect or 
correct even a single error.  But if the minimum Hamming distance is two, then a single error must 
turn a valid codeword into an invalid one, thus allowing the error to be detected.

If the minimum Hamming distance is three, then a single error can be corrected.  Consider figure 1. 
Suppose “0000” is a valid codeword in a code with minimum distance three. If it is corrupted by an 
error to “0001”, we know it is not a valid codeword (since the Hamming distance is only one), and 
furthermore we know it is in the set of codewords that could only have started as “0000”. No other 
valid codeword is only a single bit-flip away from “0001”, since that would violate the assumed 
minimum Hamming distance for this code. Thus invalid codewords can be placed into disjoint sets 
that each correspond to at most one valid codeword.

If the minimum Hamming distance is four, then we can correct any single-bit error and detect any 
two-bit error. Consider figure 2. Once again, there are disjoint sets of invalid codewords that arise 
from single-bit errors. But a two-bit error cannot take us into a different set; it can only take us 
halfway to another valid codeword and thus leaves us in a no-man's-land which indicates a double-
bit error.

In general, a code that can correct n errors and detect m errors (m ≥ n) must have a minimum 
Hamming distance of n+m+1.
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Suppose 0000 and 0111 are valid codewords.  A single error will produce a codeword that is correctable to the 
original valid codeword.  But a double error could, for example, change 0000 into 0011, which would be falsely 
corrected to 0111.

01110000 0001 0011

0010

0100 1000

1111

0101 0110

All map to 0000 All map to 0111

Figure 1 – Code with Minimum Hamming Distance of 3

Suppose 00000 and 01111 are valid codewords.  A single error will produce a codeword that is correctable to 
the original valid codeword.  A double error could, for example, change 00000 into 00011, which is Hamming 
distance two from the nearest valid codewords and thus is known to be an uncorrectable error.

0111100000 00001 00111

00010

00100 01000

11111

01011 01101

All map to 00000

Figure 2 – Code with Minimum Hamming Distance of 4

10000 01110

00011

Uncorrectable

All map to 01111



In order to implement an error correcting code, we need three things:
• Logic to create the check bits with the desired minimum Hamming distance
• Logic on the receiving end to check the check bits and determine if there was an error
• Logic to correct the data, if correctable

3.  A Simple Error-Correcting Code

First, we will consider a single-error-correcting code with a minimum Hamming distance of three.

To create the check bits, we will choose a pattern of check bits associated with each data bit. Let's 
call this the name for that data bit.1 The check bits for an entire word will be the exclusive-OR of the 
names for each data bit whose value is one. For example, if we choose the name  “0 0 0 1 1” to go 
with data bit zero, and “0 0 1 1 0” to go with data bit one, then a codeword with just data bits zero 
and one set would have check bits “0 0 1 0 1”.

But how do we choose names so that the minimum Hamming distance is three? This is actually 
easier than it may sound. We may choose any names we like such that:

• Each data bit has a unique name;
• Each name has at least two bits set.

To see that we have achieved our minimum distance, consider any two valid nonidentical 
codewords. The data portion must differ, since two valid codewords couldn't have identical data but 
different checkbits.  If the data portion differs in:

• A single data bit, then their check words differ in the two or more bits corresponding to the 
name for that data bit. So the minimum distance is three (1 data + 2 check).

• Two data bits, then their check words differ by the exclusive-OR of the two corresponding 
names. Since each name is unique, they must differ in at least one bit, so the minimum 
distance is three (2 data + 1 check).

• Three or more data bits, then we have met our minimum distance of three regardless of the 
check bits.

The code is often represented in a table, such as the one below.  The name of each data bit may be 
read by looking down the column below the bit.  In this case, we have assigned names in order 
starting with bit zero, using each possible name that meets the criterion of having two or more bits 
set.  Thus, we used these names:  0011, 0101, 0110, 0111, 1001, 1011, 1100.  We could also have 
used 1101, 1110, or 1111, but we only needed eight of the eleven possible names.  (We could have 
chosen any eight, and assigned them in any order.)

     Data bits
  7 6 5 4 3 2 1 0

Check bit 0:  0 1 0 1 1 0 1 1
Check bit 1:  0 1 1 0 1 1 0 1
Check bit 2:  1 0 0 0 1 1 1 0
Check bit 3:  1 1 1 1 0 0 0 0

Each check bit then is simply the exclusive-OR of each data bit that has a “1” in the corresponding 
row. The logic (in Verilog) that generates the check bits for this example is given here.  (In Verilog, 
the “^” operator denotes exclusive-OR.  Since exclusive-OR is commutative and associative, the 
grouping of these operations into gates is immaterial.)

assign checkbits[0] = d[6] ^ d[4] ^ d[3] ^ d[1] ^ d[0];
assign checkbits[1] = d[6] ^ d[5] ^ d[3] ^ d[2] ^ d[0];
assign checkbits[2] = d[7] ^ d[3] ^ d[2] ^ d[1];
assign checkbits[3] = d[7] ^ d[6] ^ d[5] ^ d[4];

1 This is not standard terminology, but is a term that the author believes is useful.
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When the code word is received (or retrieved from storage), one or more errors may have occurred. 
Each error is considered to be a single bit that has changed state.  (Errors such as reading the 
wrong location in memory are not considered here.)  To determine if the received codeword is valid, 
we generate a new set of checkbits from the data and compare it to the received checkbits. If no 
error has occurred, the two versions of the checkbits must match.

The exclusive-OR of the new and old checkbits is called the syndrome. The syndrome tells us what 
we need to know about the error.  Consider what happens if a single data bit i flips from zero to one. 
If the original data bits were x0, x1, ... xn, the original checkbits were

namex0 ^ namex1 ... ^ namexn

The new checkbits will be
namex0 ^ namex1 ... ^ namei ... ^ namexn

Recalling that exclusive-OR is commutative and associative, and its own inverse, the exclusive-OR 
of the above two expressions is

(namex0 ^ namex0) ^ (namex1 ^ namex1) ^ ... ^ (namexn ^ namexn) ^ namei

                      =  0  ^  0  ^  ...  ^  0  ^  namei

         =  namei

Thus, in this case, the syndrome is simply the name of the bad bit.  In the case where data bit i  
flipped from one to zero, the original checkbits were

namex0 ^ namex1 ... ^ namei ... ^ namexn

and the new checkbits are
namex0 ^ namex1 ... ^ namexn

These are the same two expressions as above, in the opposite order; the exclusive-OR is the same. 
Either way, the result is the name of the flipped bit.

Of course, errors can occur in check bits as well as in data bits; the cosmic rays do not care which 
bits are which.  If there is a single bit error in a checkbit, the syndrome will have just that bit set. 
This is easily distinguished from a data bit name, since names have at least two bits set.

A simple decoder on the syndrome can be used to generate the signals with which to exclusive-OR 
the data bits to correct single-bit errors. But a decode of zero (no error), or of 1, 2, 4, 8, ... (check bit 
error), will indicate that the data does not need to be corrected.

This code is not designed for double errors. If there are errors in two data bits, the syndrome will 
equal the exclusive-OR of the two names, and this will be some arbitrary non-zero number. If that 
number happens to be the name of some other bit, the circuit will mistakenly “correct” that bit, 
causing a third error. If this situation is likely to occur, then we need a stronger code.

4.  SECDED Codes

The most commonly-used error-correcting codes are SECDED codes; as stated earlier this stands 
for “single error correcting, double error detecting”. The logic is very similar to that of the single-error 
correcting code we just looked at, but, we saw above, we now need a minimum Hamming distance 
of four.

To do this, we will add one more rule in choosing names for bits.  (The first two rules are the same 
as in the code above.)

• Each data bit has a unique name;
• Each name has at least two bits set;
• Each name must have an odd number of bits set in it.
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One way to do this is by increasing the size of the checkbit field by one, and using this bit as a 
parity for the checkbits.  This will also guarantee that the entire codeword has consistent parity, 
since each additional bit set in the codeword causes an even number of bits to be flipped (an odd 
number in the  checkbits plus the one data bit).  Actually, one can equivalently think of the extra 
checkbit as the exclusive-OR of the rest of the codeword, and it is sometimes described this way; 
but it is unlikely that one would implement it that way since this would become the critical path of the 
logic.

Note that each name now has at least three bits set in it. Now let's re-examine the cases to see if 
we meet our minimum Hamming distance. Consider any two valid nonidentical codewords. If their 
data bits differ in:

• A single data bit, then their check words differ in the three or more bits corresponding to the 
name for that data bit. So the minimum distance is four (1 data + 3 check).

• Two data bits, then their check words differ by the exclusive-OR of the two corresponding 
names. Since each name is unique, they must differ in at least one bit. But since each 
name has odd parity, it is impossible for them to differ in only a single bit. So the minimum 
distance is four (2 data + 2 check).

• Three data bits:  Since the exclusive-OR of three values with odd parity must have odd 
parity, it must have at least one bit set. So the minimum distance is four (3 data + 1 check).

• Four or more data bits, then we have met our minimum distance of four regardless of the 
check bits.

Here is the code in table form.  While one approach would have been to simply choose the first 
eight names that meet all our criteria, we have instead chosen to define check bits 0-3 as in the 
previous code and simply add check bit 4 as a parity bit:

     Data bits
  7 6 5 4 3 2 1 0

Check bit 0:  0 1 0 1 1 0 1 1
Check bit 1:  0 1 1 0 1 1 0 1
Check bit 2:  1 0 0 0 1 1 1 0
Check bit 3:  1 1 1 1 0 0 0 0
Check bit 4:  1 0 1 1 0 1 1 1

One additional improvement we can make to the code:  We can invert the output of some of the 
exclusive-OR operations (equivalent to replacing the exclusive-OR with exclusive-NOR).  With the 
same change made in both the sender and the receiver, this has no real effect except to change the 
“baseline” value of some of the checkbits.  This is useful because one common type of multi-bit 
error is to have the entire word turned “off” in some way, so that it becomes entirely zero.  It is good 
practice to have the all-zero codeword represent an uncorrectable error.  In our example, let's pick 
check bits 3 and 4 to make exclusive-NOR.  The resulting Verilog for generating the check bits is:

assign checkbits[0] =   d[6] ^ d[4] ^ d[3] ^ d[1] ^ d[0];
assign checkbits[1] =   d[6] ^ d[5] ^ d[3] ^ d[2] ^ d[0];
assign checkbits[2] =   d[7] ^ d[3] ^ d[2] ^ d[1];
assign checkbits[3] = ~(d[7] ^ d[6] ^ d[5] ^ d[4]);
assign checkbits[4] = ~(d[7] ^ d[5] ^ d[4] ^ d[2] ^ d[1] ^ d[0]);

On the receiving end, once again, we generate new checkbits, and exclusive-OR them with the 
received checkbits to form the syndrome. If there is no error, the syndrome will be zero; and if there 
is a single error the syndrome will equal the name of the bad bit. So far this is the same as the 
single-error-correcting code above. But now consider what happens when there are two errors. The 
syndrome will be the exclusive-OR of two names (or a name and a checkbit, or two checkbits), but it 
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cannot possibly be equal to some valid name because the parity will not match. Whether names or 
checkbits, it will be the exclusive-OR of two odd-parity numbers and thus will have even parity. 
Parity guarantees that we will detect that an uncorrectable error has occurred.

Here is the Verilog of the check/correct block:

// calculate syndrome:

assign synd[0] =   c[0] ^ d[6] ^ d[4] ^ d[3] ^ d[1] ^ d[0];
assign synd[1] =   c[1] ^ d[6] ^ d[5] ^ d[3] ^ d[2] ^ d[0];
assign synd[2] =   c[2] ^ d[7] ^ d[3] ^ d[2] ^ d[1];
assign synd[3] = ~(c[3] ^ d[7] ^ d[6] ^ d[5] ^ d[4]);
assign synd[4] = ~(c[4] ^ d[7] ^ d[5] ^ d[4] ^ d[2] ^ d[1] ^ d[0]);

// Decoder for syndromes:
//   The “flip” signals will be used to correct the data bits
//   The “chkb” signals indicate a single checkbit error
//   The “dbl” signals indicate a double-bit error
//   The “badcode” signals indicate unused names and thus multibit errors

assign noerror = ~synd[4] & ~synd[3] & ~synd[2] & ~synd[1] & ~synd[0];
assign chkb[0] = ~synd[4] & ~synd[3] & ~synd[2] & ~synd[1] &  synd[0];
assign chkb[1] = ~synd[4] & ~synd[3] & ~synd[2] &  synd[1] & ~synd[0];
assign dbl[0]  = ~synd[4] & ~synd[3] & ~synd[2] &  synd[1] &  synd[0];
assign chkb[2] = ~synd[4] & ~synd[3] &  synd[2] & ~synd[1] & ~synd[0];
assign dbl[1]  = ~synd[4] & ~synd[3] &  synd[2] & ~synd[1] &  synd[0];
assign dbl[2]  = ~synd[4] & ~synd[3] &  synd[2] &  synd[1] & ~synd[0];
assign flip[3] = ~synd[4] & ~synd[3] &  synd[2] &  synd[1] &  synd[0];
assign chkb[3] = ~synd[4] &  synd[3] & ~synd[2] & ~synd[1] & ~synd[0];
assign dbl[3]  = ~synd[4] &  synd[3] & ~synd[2] & ~synd[1] &  synd[0];
assign dbl[4]  = ~synd[4] &  synd[3] & ~synd[2] &  synd[1] & ~synd[0];
assign flip[6] = ~synd[4] &  synd[3] & ~synd[2] &  synd[1] &  synd[0];
assign dbl[5]  = ~synd[4] &  synd[3] &  synd[2] & ~synd[1] & ~synd[0];
assign badcode[0]=~synd[4]&  synd[3] &  synd[2] & ~synd[1] &  synd[0];
assign badcode[1]=~synd[4]&  synd[3] &  synd[2] &  synd[1] & ~synd[0];
assign dbl[6]  = ~synd[4] &  synd[3] &  synd[2] &  synd[1] &  synd[0];
assign chkb[4] =  synd[4] & ~synd[3] & ~synd[2] & ~synd[1] & ~synd[0];
assign dbl[7]  =  synd[4] & ~synd[3] & ~synd[2] & ~synd[1] &  synd[0];
assign dbl[8]  =  synd[4] & ~synd[3] & ~synd[2] &  synd[1] & ~synd[0];
assign flip[3] =  synd[4] & ~synd[3] & ~synd[2] &  synd[1] &  synd[0];
assign dbl[9]  =  synd[4] & ~synd[3] &  synd[2] & ~synd[1] & ~synd[0];
assign flip[3] =  synd[4] & ~synd[3] &  synd[2] & ~synd[1] &  synd[0];
assign flip[3] =  synd[4] & ~synd[3] &  synd[2] &  synd[1] & ~synd[0];
assign dbl[10] =  synd[4] & ~synd[3] &  synd[2] &  synd[1] &  synd[0];
assign dbl[11] =  synd[4] &  synd[3] & ~synd[2] & ~synd[1] & ~synd[0];
assign flip[4] =  synd[4] &  synd[3] & ~synd[2] & ~synd[1] &  synd[0];
assign flip[5] =  synd[4] &  synd[3] & ~synd[2] &  synd[1] & ~synd[0];
assign dbl[12] =  synd[4] &  synd[3] & ~synd[2] &  synd[1] &  synd[0];
assign flip[7] =  synd[4] &  synd[3] &  synd[2] & ~synd[1] & ~synd[0];
assign dbl[13] =  synd[4] &  synd[3] &  synd[2] & ~synd[1] &  synd[0];
assign dbl[14] =  synd[4] &  synd[3] &  synd[2] &  synd[1] & ~synd[0];
assign badcode[2]=synd[4] &  synd[3] &  synd[2] &  synd[1] &  synd[0];

// final results:
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assign corrected_data = d ^ flip;
assign uncorrectable = (| dbl[14:0])     // even number of errors
                     | (| badcode[2:0]); // 3 or more (odd) errors
                                         // that don't even LOOK like
                                         // correctable errors

// Note:  The chkb[] signals, indicating an error in the checkbits, are
// unused because no action is necessary in this case.

What happens if three bits get flipped? Since this is a SECDED code, it makes no guarantees. The 
exclusive-OR of three odd-parity names might or might not equal some other valid name, causing a 
mis-correction. (The few cases that don't look like a valid name trigger the “badcode” signals in the 
logic above.)  Any even number of errors, however, will always be flagged as an uncorrectable 
error, since the parity of the syndrome will be same as for a two-bit error.

5.  Other codes

When choosing a code, it is important to consider what types of errors are expected in the system 
being protected. The SECDED code above assumes that single-bit errors are important, two-bit 
errors are rare, and three-bit (or more) errors are so rare that they can be ignored. This is often a 
good assumption, but not always. Suppose you are storing data in a memory that is built from 4-bit-
wide chips, and there is some possibility of an entire chip failing. What code would we use then?

We do not need to detect any arbitrary 4-bit error, but we do want to detect the case where a single 
chip fails causing 1, 2, 3, or 4 errors within one aligned group of four bits (one “nibble”). Our code 
already detects any 1, 2, or 4 bits, but what about 3?

Here is another way to state the problem: For any aligned group of four bits, their names must be 
chosen such that the exclusive-OR of any three of them cannot look like any valid name.

Here is one solution: Choose the names such that bits 0, 1, and 2 have these values:
Bit 0 of any nibble: 0 0 0
Bit 1 of any nibble: 0 0 1
Bit 2 of any nibble: 0 1 0
Bit 3 of any nibble: 1 0 0

The rest of the bits of the name are chosen so the names meet the same rules given before. One 
can see by inspection that the exclusive-OR of any three of these cannot equal a valid name, since 
it will have two or three bits set among bits 0, 1, and 2, while all valid names have only zero or one 
bits set.

This code requires an additional checkbit, which is not surprising since we are deliberately making 
valid codewords more sparse.  Codes exist, however, for doing nibble detection with larger data 
words without any addition bits beyond what is needed for SECDED.

The code above corrects any one error, detects any two, and detects any error within one nibble. 
More complex codes can be used to correct any error within a nibble, or even to do that while 
correcting single additional errors as well.  Adding more check bits allows making a code stronger in 
order to overcome more types of expected errors.
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