2/19/13 CS/ECE 552 Spring 2008: Verilog Rules

Use of Verilog in CS/ECE 552

Adapted from Andy Phelps CS552-Sp'06 document
Last Updated: February 4, 2008

Table of Contents

Introduction

Justification of Limitation
Allowed Keywords

Allowed Operators

Usage Examples

CS 552 Verilog Check Program

ok wbdE

1. Introduction

In the CS 552 course you will be limited to a small subset of the complete Verilog language. The purpose of
this document is to outline and explain these usage restrictions. It is not a complete Verilog reference. You
can consult the following resources for a more complete documentation of the language:

e On-line Verilog HDL Quick Reference Guide
e ASIC World Verilog Quick Reference

2. Justification of Limitation

The intention of limiting the Verilog language is to force you to "think like hardware". Verilog in its full form is
a powerful HDL that can very nearly be used as a programming language with capabilities similar to C.
While this is useful for experienced designers trying to increase productivity, there is no intellectual benefit
to be gained by using the abstract features of Verilog. Instead, you will write Verilog in a manner that
reflects the actual hardware you are trying to design. Think of it as verbally describing the components of a
schematic sheet.

In addition to the educational value of using a subset of the Verilog specification, limiting your code to only
well-understood constructs will also help to avoid some pitfalls which can lead to hard to find bugs. Verilog
designs have been found which simulate correctly or incorrectly, basically at random, depending on what
order certain assignments happen to execute in. Designing with a limited subset of Verilog will tend to
produce good designs which synthesize well; for this reason you may be required to follow similar rules
when you have a job in industry.

3. Allowed Keywords
Verilog keywords in this course are grouped into three categories: always allowed, allowed with stipulations,
and never allowed. These groups can be found in Table 1. This list is not guaranteed to be complete. If you

are ever in doubt about the use of a Verilog keyword consult the TA before proceeding.

Verilog Keyword Summary

pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_rules/index.html

Always Allowed Allowed with Never Allowed
Stipulations
assign case attribute pulldown
module casex buf pullup
endmodule reg bufifo rcmos
input always bufifl real

1/5

http://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_rules/index.html#intro
http://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_rules/index.html#justify
http://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_rules/index.html#keyword
http://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_rules/index.html#operate
http://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_rules/index.html#usage
http://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_rules/index.html#check
http://www.sutherland-hdl.com/on-line_ref_guide/vlog_ref_top.html
http://www.asic-world.com/verilog/vqref.html

2/19/13

output
wire
define
parameter

CS/ECE 552 Spring 2008: Verilog Rules

begin
end

casez
cmos
deassign
disable
edge
else
endattribute
endfunction
endprimitive
endspecify
endtable
endtask
event
for
forever
fork
function
highz0
highzl
if
ifnone
initial
inout
integer
join
medium
large
macromodule
negedge
nmos
notifo
notifl
pmos
posedge
primitive
pullo
pulll

realtime
release
repeat
rnmos
rpmos
rtran
rtranifo
rtranifl
scalared
signed
small
specify

specparam

strength
strong0
strongl
supply0
supplyl
table
task
time
tran
tranifO
tranifl
tri
trio
tril
triand
trior
trireg
unsigned
vectored
wailt
wand
weak0
weakl
while
wor

Keywords in the allowed with stipulations group can only be used in conjunction with a case statement.

The following stipulations apply:

e Case, casex-the default clause is required. If the default clause is used during execution,

an error must be asserted. Large CaSe statements (~12 lines or more) must go in their own module.
e 'eg - can only be used to specify the outputs of a case statement.
o always - can only be used to introduce a case statement.

pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_rules/index.html

2/5

2/19/13

CS/ECE 552 Spring 2008: Verilog Rules

e begin - can only be used to introduce a case statement.

e end - can only be used to terminate a case statement.

4. Allowed Operators

In this course you will be limited to using simple boolean logic operators. You may use the shift operators,
but only by a constant amount (i.e. sigY << sigXis not allowed, but sigY << 4 is). The ternery operator (a?
b:c) is allowed and even encouraged. Concatination ({bit, bit}) and reduction (&a[31:0]) are allowed.

Logical equality (==) and inequality (=) operators are also permitted.

You are expressly forbidden from using arithmetic operators (+, -, *, /, %) and less-than or greater-than

comparisons.

Table 2 summaries the use of Verilog operators

http://www.cs.wisc.edu/~markhill/cs552/Fall2006/

Allowed Not Allowed
~m Inversion m+ n Addition
m&n Bitwise AND m - n Subtraction
m | n Bitwise OR m* n Multiplication
m ™ n Bitwise XOR m/ n Division
m ~"n Bitwise NXOR m % n Modulus
&m AND Reduction -m Negation (2's Comp)
~&m NAND Reduction m && n Logical AND
| m OR Reduction m || n Logical OR
~|m NOR Reduction m<n Less Than
~m XOR Reduction m > n Greater Than
~"m NXOR Reduction m <= n Less Than or Equals
m == n Equality m >= n Greater Than or Equals
m!=n Inequality
m === n ldentity
m !==n Not Identical
m << const Shift Left*
m >> const Shift Right*
test ? m:n Ternary
{m, n} Concatenation
{m{n}} Replication

5. Usage Examples

The most fundamental thing to keep in mind is that your hardware design will be composed of two things:
combinational logic, and state. For any moderately complex logic design, state must be handled in an
organized way. An R-S flipflop would get you laughed out the door of a computer design company! In our
designs, state will all be held in D-flipflops that are all clocked on the rising edge of a common system clock.
You are provided here with a module for a single D-flipflop with synchronous reset. Instantiate copies of this
module to build larger registers. Do not create your own flipflops in some other way.

Combinational logic will be specified primarily with "assign"” statements. The statement "assign xyz=a & b;"
specifies an AND gate. An assign statements can get long and complex, and can specify hundreds of gates,

pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_rules/index.html

3/5

http://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_code/dff.v

2/19/13 CS/ECE 552 Spring 2008: Verilog Rules

but it always represents some set of flow-through logic that generates the value for a wire (or bundle of
wires).

Your design will be hierarchical. That means you will write Verilog modules for all the small building blocks of
your design, and you will instantiate these modules within larger modules. For example, if you want to
increment a number, do not create new increment logic each time; write increment modules of whatever
sizes are needed and call them from your other modules. Most of your design should consist of calls to
other modules.

The modules you write should have a structure like this:

module my module name (param, param, ... param);

input param;

output param;

wire [msb:1lsb] signalName;

assign signalName = expression;

modulename instance (param, param...); // call some submodule
endmodule

First, we name the module and list all its input and output parameters (in order). Second, we list all the input
and output parameters all over again, giving their sizes, e.g.

input [7:0] firstByte;
Put the input and output statements in the same order that the parameters appear in the module statement.
Verilog does not require it, but good practice (and this class) require that you do so.

The assign statements specify all logic that is to be done in this module. Care should be taken to format it
so that it is readable; use liberal whitespace and consider lining up similar logic into columns.

Note that assign statements can operate on an entire "vector" of bits at one time. Sometimes this involves
making multiple copies of a 1-bit wire in order to interact with the vectors. For example:

wire [15:0] a, b, ss, ans;

assign ss = {16{s}}; // use 16 copies of "s"

assign ans = (ss ~ a) | b;

When instantiating a module, you must use name the ports when connceting wires to it. For example:
mux2 1 mO(dO, d1, s, b) is NOT OK
mux2 1 mO(.input@(d0), .inputl(dl), .select(s), .output@(b)) is CORRECT

Although a case statement is a fairly high-level construct, it is an extremely
useful way of representing muxes, next-state evaluation, and other common types of
logic. The case statement will be the only situation in this class where you will
use statements such as begin, end, reg, always. Look at this example:

wire [1:0] s;

reg out;

always @* case (s)
2'b00 : out = i0;
2'b01 : out = il;
2'bl0 : out = i2;
2'bll : out = i3;
endcase

The value for the outputs of the case statement must be specified in every case.
This is important: Failure to specify a value for some output bit will cause it to
retain its previous state, causing a glitch-prone RS latch to form.

pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_rules/index.html 4/5

2/19/13 CS/ECE 552 Spring 2008: Verilog Rules

Here is a slightly less trivial example. This case statement implements the logic
for a state machine which looks for pulses on inputA and then inputB. Note that all
outputs are set in each case. Note also that it is clear by inspection that all

combinations of inputs have been considered.

wire inputA, inputB, goBack;
wire [2:0] currentState;

reg [2:0] newState;

reg out, err;

always @(goBack or currentState or inputA or inputB)
casex ({goBack, currentState, inputA, inputB})
6'bl 7?7 ? ? : begin out = 0; newState = 3'b000; err=0;

6'bO 000 0 ? : begin out = 0; newState = 3'b000; err=0;
6'b0 000 1 ? : begin out = 0; newState = 3'b001; err=0;
6'b0 001 1 ? : begin out = 0; newState = 3'b001; err=0;
6'b0 001 0 O : begin out = 0; newState = 3'b010; err=0;
6'b0 001 0 1 : begin out = 0; newState = 3'b011; err=0;
6'b0 010 ? O : begin out = 0; newState = 3'b010; err=0;
6'b0 010 ? 1 : begin out = 0; newState = 3'b011; err=0;
6'b0 011 ? 1 : begin out = 0; newState = 3'b011; err=0;
6'b0 011 ? O : begin out = 0; newState = 3'b100; err=0;
6'b0 100 ? ? : begin out = 1; newState = 3'b000; err=0;
6'b0 101 ? ? : begin out = 0; newState = 3'b000; err=1;
6'b0 110 ? ? : begin out = 0; newState = 3'b000; err=1;
6'b0 111 ? ? : begin out = 0; newState = 3'b000O; err=1;

default: begin out = 0; newState = 3'b000; err=1; end
endcase

Also not allowed: Any notion of time or delays; any real numbers.
are OK for debugging but must not appear in a finished assignment.

6. CS 552 Verilog Check Program

A Java program Vcheck will be used to scan your design for some of the common
illegal constructs. It is fairly simple, and can be easily fooled into either
allowing things or complaining incorrectly. But it is a useful tool if you are
unclear as to whether or not your design meets the requirements set forth here. You
will be required to run it on your Verilog designs and hand in the output; To run
it, copy the two class files Vcheck.class and VerFile.class into a directory, and

end
end
end
end
end
end
end
end
end
end
end
end
end
end

Force statements

from that directory type "java Vcheck <myfile.v>"

Method 2: From the unix prompt on a CS machine, cd to the directory where your
verilog files are and issue the following command: vcheck.sh <myfile.v>
<myfile.vcheck> Method 3: To run vcheck on all the verilog files in a directory:

vcheck-all.sh

pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_rules/index.html

5/5

http://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_code/Vcheck.class
http://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//handouts/verilog_code/VerFile.class

