
2/1/2013

1

CS/ECE 552, Spring 2008 1

Verilog
For Computer Design

CS/ECE 552

Karu Sankaralingam

Based on slides from

Derek Hower (UW-Madison), Andy Phelphs (UW-Madison) and
Prof. Milo Martin(University of Pennsylvania)

Overview

• Why Verilog?

 High-level description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Parameters, Pre-processor, case statements, Common errors,
system tasks

• Sequential logic

• Test bench structure

• Case study, Verilog tools and Demo
CS/ECE 552, Spring 2008 2

Why Verilog and why not Manual design?

State of Art Design

Do you want to design this Processor manually?

CS/ECE 552, Spring 2008 4

How To Represent Hardware?

• If you’re going to design a computer, you need to write
down the design so that:

• You can read it again later

• Someone else can read and understand it

• It can be simulated and verified

• Even software people may read it!

• It can be synthesized into specific gates

• It can be built and shipped and make money($$$)

2/1/2013

2

CS/ECE 552, Spring 2008 5

Ways to represent hardware:

• Draw schematics

• Hand-drawn (Seriously?)

• Machine-drawn

• Write a netlist – ASCII representation of Interconnect of a
schematic

• Z52BH I1234 (N123, N234, N4567);

• Write primitive Boolean equations

• AAA = abc DEF + ABC def

• Use a Hardware Description Language (HDL)

• assign overflow = c31 ^ c32;

CS/ECE 552, Spring 2008 6

Hardware Description Languages (HDLs)

• Textual representation of a digital logic design

• Can represent specific gates, like a netlist, or more abstract logic

• HDLs are not “programming languages”

• No, really. Even if they look like it, they are not.

• For many people, a difficult conceptual leap

• Similar development chain

• Compiler: source code assembly code binary machine code

• Synthesis tool: HDL source gate-level specification hardware

7

What is an HDL? – “Think hardware”

module counter(clk,rst_n,cnt);

 input clk,rst_n;

 output [3:0] cnt;

 reg [3:0] cnt;

 always @(posedge clk) begin

 if (~rst_n)

 cnt = 4’b0000;

 else

 cnt = cnt+1;

 end

endmodule

• It looks like a programming language

• It is NOT a programming language

 It is always critical to recall you
are describing hardware

 This codes primary purpose is
to generate hardware

 The hardware this code
describes (a counter) can be

simulated on a computer. In this
secondary use of the language it

does act more like a
programming language.

if(x != 0) vs. if((x <= -1) || (x >= 1))
What hardware is generated here ?

CS/ECE 552, Spring 2008 8

Why an HDL is not a Programming Language

• In a program, we start at the beginning (e.g. “main”), and
we proceed sequentially through the code as directed

• The program represents an algorithm, a step-by-step
sequence of actions to solve some problem

 for (i = 0; i<10; i=i+1) {

 if (newPattern == oldPattern[i]) match = i;

 }

• Hardware is all active at once; there is no starting point

2/1/2013

3

Why Use an HDL?

• Enables Larger Designs

 More abstracted than schematics, allows larger designs.

 Register Transfer Level Description

 Wide data paths (16, 32, or 64 bits wide) can be abstracted to
a single vector

 Synthesis tool does the bulk of the tedious repetitive work

 Work at transistor/gate level for large designs: cumbersome

• Explore larger solution space

 Synthesis options can help optimize (power, area, speed)

 Synthesis options and coding styles can help examine tradeoffs

-Speed | Power | area

CS/ECE 552, Spring 2008 CS/ECE 552, Spring 2008 10

Why use an HDL? (continued)

• Easy to write and edit

• Compact

• Don’t have to follow a maze of lines

• Easy to analyze with various tools

Why not to use an HDL

• You still need to visualize the flow of logic

• A schematic can be a work of art
• But often isn’t! (My first Processor example)

11

Other Important HDL Features

• Are highly portable (text)

• Are self-documenting (when commented well)

• Describe multiple levels of abstraction

• Represent parallelism

• Provides many descriptive styles

Structural

Register Transfer Level (RTL)

Behavioral

• Serve as input for synthesis tools

CS/ECE 552, Spring 2008 12

Starting with an example…

module fulladd (input A, B, Cin,

 output sum, Cout);

assign sum = A ^ B ^ Cin;

assign Cout = (A & B)| (A & Cin)| (B & Cin);

endmodule

Cin

A

B

Sum

Cout

1 bit Full

Adder

2/1/2013

4

CS/ECE 552, Spring 2008 13

Pitfalls of trying to “program” in Verilog

• If you program sequentially, the synthesizer may add a lot
of hardware to try to do what you say
• In last example, need a priority encoder

• If you program in parallel (multiple “always” blocks), you
can get non-deterministic execution – Race Condition
• Which “always” happens first?

• You create lots of state that you didn’t intend
if (x == 1) out = 0;

if (y == 1) out = 1; // else out retains previous state? R-S latch!

• You don’t realize how much hardware you’re specifying
• x = x + 1 can be a LOT of hardware

• Slight changes may suddenly make your code “blow up”
• A chip that previously fit suddenly is too large or slow

CS/ECE 552, Spring 2008 14

Two Roles of HDL and Related Tools

• #1: Specifying digital logic

• Specify the logic that appears in final design

• Either

• Translated automatically (called synthesis) or

• Optimized manually (automatically checked for equivalence)

• #2: Simulating and testing a design

• High-speed simulation is crucial for large designs

• Many HDL interpreters optimized for speed

• Testbench: code to test design, but not part of final design

15

Module Styles

• Modules can be specified different ways

Structural – connect primitives and modules

Dataflow– use continuous assignments

Behavioral – use initial and always blocks

• A single module can use more than one of the above 3
coding styles!

What are the differences?

CS/ECE 552, Spring 2008 16

HDL Constructs

• Structural constructs specify actual hardware structures

• Low-level, direct correspondence to hardware

• Primitive gates (e.g., and, or, not)

• Hierarchical structures via modules

• Analogous to programming software in assembly

• RTL/Dataflow constructs specify an operation on bits

• High-level, more abstract

• Specified via equations, e.g., out = (a & b) | c

• Behavioral – Describes behavior of the circuit

• Always , initial blocks, procedural assignments

• Not all behavioral constructs are synthesizable

• We’ve already talked about the pitfalls of trying to “program”

• But even some combinational logic won’t synthesize well

• out = a % b // modulo operation – what does this synthesize to?

• We will not use: / % > >= < <= >> <<

2/1/2013

5

17

Structural Example

module majority (major, V1, V2, V3) ;

output major ;
input V1, V2, V3 ;

wire N1, N2, N3;

and A0 (N1, V1, V2),
 A1 (N2, V2, V3),
 A2 (N3, V3, V1);

or Or0 (major, N1, N2, N3);

endmodule

V1
V2

V2
V3

V3
V1

major

N1

N2

N3

A0

A1

A2

Or0

majority

18

RTL/Dataflow Example

module majority (major, V1, V2, V3) ;

output major ;
input V1, V2, V3 ;

assign major = V1 & V2
 | V2 & V3
 | V1 & V3;

endmodule

V1

V2

V3

major majority

Continuous Assignment Statement

19

Behavioral Example

module majority (major, V1, V2, V3) ;

output reg major ;
input V1, V2, V3 ;

always @(V1, V2, V3) begin

 if (V1 && V2 || V2 && V3
 || V1 && V3) major = 1;

 else major = 0;
end

endmodule

V1

V2

V3

major majority

Overview

• Why Verilog?

 High-level description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Parameters, Pre-processor, case statements, Common errors,
system tasks

• Sequential logic

• Test bench structure

• Case study, Verilog tools and Demo
CS/ECE 552, Spring 2008 20

2/1/2013

6

CS/ECE 552, Spring 2008 21

Recall: Two Types of Digital Circuits

• Combinational Logic

• Logic without state variables

• Examples: adders, multiplexers, decoders, encoders

• No clock involved

• Not edge-triggered

• All “inputs” (RHS nets/variables) are triggers

• Sequential Logic (Details explained later)

• Logic with state variables

• State variables: latches, flip-flops, registers, memories

• Clocked - Edge-triggered by clock signal

• State machines, multi-cycle arithmetic, processors

• Only clock (and possibly reset) appear in trigger list

• Can include combinational logic that feeds a FF or register

1/24/2006

22

Verilog Structural Primitives

No declaration; can only be instantiated
Imp * - All output ports appear in list before any input ports
Optional drive strength, delay, name of instance
Example: and N25 (Z, A, B, C); //instance name
Example: and #10 (Z, A, B, X); // delay
 (X, C, D, E); //delay
/*Usually better to provide instance name for debugging.*/

Example: or N30 (SET, Q1, AB, N5),
 N41 (N25, ABC, R1);
Example: and #10 N33(Z, A, B, X); // name + delay

1/24/2006 23

Number Representation

Examples:
6’b010_111 gives 010111

8'b0110 gives 00000110

8’b1110 gives 00001110

4'bx01 gives xx01

16'H3AB gives 0000001110101011

24 gives 0…0011000

5'O36 gives 11100

16'Hx gives xxxxxxxxxxxxxxxx

8'hz gives zzzzzzzz

Format: <size><base_format><number>

1/24/2006 24

Connections – Module Instantiations

• By position association

module 2_to_4_decode (A, E_n, D);

4_to_16_decode DX (X[3:2], W_n, word);

A = X[3:2], E_n = W_n, D = word

• By name association (this is supposed to be used in HW
s and Projects)

module 2_to_4_decode (A, E_n, D);

C_2_4_decoder_with_enable DX (.E_n(W_n), .A(X[3:2]),
.D(word));

A = X[3:2], E_n = W_n, D = word

2/1/2013

7

CS/ECE 552, Spring 2008 25

Hierarchical Verilog Example

• Build up more complex modules using simpler modules

• Example: 4-bit wide mux from four 1-bit muxes

• Again, just “drawing” boxes and wires

module mux2to1_4(

 input [3:0] A,

 input [3:0] B,

 input Sel,

 output [3:0] O);

 mux2to1 mux0 (Sel, A[0], B[0], O[0]);

 mux2to1 mux1 (Sel, A[1], B[1], O[1]);

 mux2to1 mux2 (Sel, A[2], B[2], O[2]);

 mux2to1 mux3 (Sel, A[3], B[3], O[3]);

endmodule

1/24/2006 26

Variables

• Nets (Also called as wires)
 Used for structural connectivity

• Registers
 Abstraction of storage (May or may not be real physical storage)

• Properties of Both
 Informally called signals

 May be either scalar (one bit) or vector (multiple bits)

CS/ECE 552, Spring 2008 27

Verilog Module Example of wires

module mux2to1(

 input S, A, B,

 output O);

 wire S_, AnS_, BnS;

 not (S_, S);

 and (AnS_, A, S_);

 and (BnS, B, S);

 or (O, AnS_, BnS);

endmodule

S

O

B

A

1/24/2006 28

Net (wire) Examples

• Wire vectors:
 wire [7:0] W1; // 8 bits, w1[7] is MSB

• Also called “buses”

• Operations

• Bit select: W1[3]

• Range select: W1[3:2]

• Concatenate:

vec = {x, y, z};

{carry, sum} = vec[0:1];

• e.g., swap high and low-order bytes of 16-bit vector

wire [15:0] w1, w2;

assign w2 = {w1[7:0], w1[15:8]}

2/1/2013

8

CS/ECE 552, Spring 2008 29

Wire and Vector Assignment

• Wire assignment: “continuous assignment”

• Connect combinational logic block or other wire to wire input

• Order of statements not important to Verilog, executed
totally in parallel

• But order of statements can be important to clarity of thought!

• When right-hand-side changes, it immediately flows through to left

• Designated by the keyword assign

wire c;

assign c = a | b;

wire c = a | b; // same thing

1/24/2006 30

Register Assignment

• A register may be assigned value only within:
 a procedural statement

 a user-defined sequential primitive

 a task, or

 a function.

• A reg object may never be assigned value by:
 a primitive gate output

 or a continuous assignment

Examples:

 reg a, b, c;

 reg [15:0] counter, shift_reg;

 reg [8:4] flops;

When to use wire and when reg !

 Wire

 Module declaration = Inputs(Yes), Outputs (Yes)

 Module instantiation = Connect input and output ports

 Must be driven by something, cannot store values

 Only legal type on left side of an assign statement

 Not allowed on left side of = or <= in an always@ block

 Most of the times combinational logic

 Reg

 Module instantiation = Input port (Yes) , Output Port (No)

 Module declaration = Inputs(No), Outputs (Yes)

 Only legal type on left side of = or <= in an always@ block

 Only legal type on left side of initial block(test bench)

 Not Allowed on left side of an assign statement

 Used for both sequential and combinational logic

• Module Instantiation

CS/ECE 552, Spring 2008 CS/ECE 552, Spring 2008 32

Operators

• Operators similar to C or Java

• On wires:
• & (and), | (or), ~ (not), ^ (xor)

• On vectors:
• &, |, ~, ^ (bit-wise operation on all wires in vector)

• E.g., assign vec1 = vec2 & vec3;

• &, |, ^ (reduction on the vector)

• E.g., assign wire1 = | vec1;

• Even ==, != (comparisons)

 Can be arbitrarily nested: (a & ~b) | c

2/1/2013

9

CS/ECE 552, Spring 2008 33

Conditional Operator

• Verilog supports the ?: conditional operator

• Just like in C

• But much more common in Verilog

• Examples:
assign out = S ? B : A;

assign out = sel == 2'b00 ? a :

 sel == 2'b01 ? b :

 sel == 2'b10 ? c :

 sel == 2'b11 ? d : 1'b0;

• What do these do?

Overview

• Why Verilog?

 High-level description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Parameters, Pre-processor, case statements, Common errors,
system tasks

• Sequential logic

• Test bench structure

• Case study, Verilog tools and Demo
CS/ECE 552, Spring 2008 34

CS/ECE 552, Spring 2008 35

Parameters

• Allow per-instantiation module parameters

• Use “parameter” statement

• modname #(10, 20, 30) instname(in1, out1);

• Example:

module mux2to1_N(Sel, A, B, O);

 parameter N = 1

 input [N-1:0] A;

 input [N-1:0] B;

 input Sel;

 output [N-1:0] O;

 mux2to1 mux0[N-1:0] (Sel, A, B, O);

endmodule

…

Mux2to1_N #(4) mux1 (S, in1, in2, out)

 CS/ECE 552, Spring 2008 36

Verilog Pre-Processor

• Like the C pre-processor
• But uses ` (back-tick) instead of #

• Constants: `define

• No parameterized macros

• Use ` before expanding constant macro

`define letter_A 8’h41

wire w = `letter_A;

• Conditional compilation: `ifdef, `endif

• File inclusion: `include

• Parameter vs `define

• Parameter only for “per instance” constants

• `define for “global” constants

2/1/2013

10

CS/ECE 552, Spring 2008 37

Common Errors

• Tools are from a less gentle time

• More like C, less like Java

• Assume that you mean what you say

• Common errors:

• Not assigning a wire a value

• Assigning a wire a value more than once

• Avoid names such as:

• clock, power, pwr, ground, gnd, vdd, vcc, init, reset

• Some of these are “special” and will silently cause errors

• We will use “clk” and “rst”, but only for their intended uses

Verilog in Project / Homework

• Use the primitive modules and other basic modules given
in course webpage for your ‘design’

• Follow the Verilog rules only for Design

• You are free to use your own test bench

• Only use the specified Verilog Keywords, allowed operators

• Go through the usage examples

• Ask TA s if you are experiencing any difficulty in following
these guidelines.

CS/ECE 552, Spring 2008

CS/ECE 552, Spring 2008 39

Non-binary Hardware Values

• A hardware signal can have four values
0, 1

X: don’t know, don’t care

Z: high-impedance (no current flowing)

• Two meanings of “x”
• Simulator indicating an unknown state

• Or: You telling synthesis tool you don’t care

• Synthesis tool makes the most convenient circuit (fast, small)

• Use with care, leads to synthesis dependent operation

• Uses for “z”
• Tri-state devices drive a zero, one, or nothing (z)

• Many tri-states drive the same wire, all but one must be “z”

• Example: multiplexer

CS/ECE 552, Spring 2008 40

Case Statements

case (<expr>)

<match-constant1>:<stmt>

<match-constant2>:<stmt>

<match-constant3>,<match-constant4>:<stmt>

default: <stmt>

endcase

2/1/2013

11

CS/ECE 552, Spring 2008 41

Case Statements

• Useful to make big muxes

• Very useful for “next-state” logic

• But they are easy to abuse

• If you don’t set a value, it retains its previous state

• Which is a latch!

• We will allow case statements, but with some severe
restrictions:

• Every value is set in every case

• Every possible combination of select inputs must be covered

• Each case lives in its own “always” block, sensitive to changes in all
of its input signals

• This is our only use of “always” blocks

Different types of Case statements

Verilog has three types of case statements:
case, casex, and casez

 Performs bitwise match of expression and case item

• Both must have same bitwidth to match!

 case

• Can detect x and z! (good for testbenches)

 casez

• Uses z and ? as “don’t care” bits in case items and expression

 casex

• Uses x, z, and ? as “don’t care” bits in case items and

expression

CS/ECE 552, Spring 2008

CS/ECE 552, Spring 2008 43

Case Statement Example

always @*
 casex ({goBack, currentState, inputA, inputB})
 6'b1_???_?_? : begin out = 0; newState = 3'b000; err=0; end
 6'b0_000_0_? : begin out = 0; newState = 3'b000; err=0; end
 6'b0_000_1_? : begin out = 0; newState = 3'b001; err=0; end
 6'b0_001_1_? : begin out = 0; newState = 3'b001; err=0; end
 6'b0_001_0_0 : begin out = 0; newState = 3'b010; err=0; end
 6'b0_001_0_1 : begin out = 0; newState = 3'b011; err=0; end
 6'b0_010_?_0 : begin out = 0; newState = 3'b010; err=0; end
 6'b0_010_?_1 : begin out = 0; newState = 3'b011; err=0; end
 6'b0_011_?_1 : begin out = 0; newState = 3'b011; err=0; end
 6'b0_011_?_0 : begin out = 0; newState = 3'b100; err=0; end
 6'b0_100_?_? : begin out = 1; newState = 3'b000; err=0; end
 6'b0_101_?_? : begin out = 0; newState = 3'b000; err=1; end
 6'b0_110_?_? : begin out = 0; newState = 3'b000; err=1; end
 6'b0_111_?_? : begin out = 0; newState = 3'b000; err=1; end
 default: begin out = 0; newState = 3’b000; err=1; end
 endcase

CS/ECE 552, Spring 2008 44

What happens if it’s wrong?

Here are our rules:

• A case statement should always have a default

• Hitting this default is an error

• Every module has an “err” output

• Can be used for other checks, like illegal inputs

• OR together all “err” signals -- bring “err” all the way to
top

• Our clock/reset module will print a message if err ==1

2/1/2013

12

CS/ECE 552, Spring 2008 45

System tasks

• Start with $

• For output:
$display(<fmtstring><,signal>*);

$fdisplay(<fhandle>,<fmtstring><,signal>*);

• Signal printf/fprintf

$monitor(<fmtstring><,signal>*);

• Non-procedural printf, prints out when a signal changes

$dumpvars(1<,signal>*);

• Similar to monitor

• VCD format for waveform viewing (gtkwave)

• Output is in dumpfile.vcd

CS/ECE 552, Spring 2008 46

More System Tasks

 $time

• Simulator’s internal clock (64-bit unsigned)

• Can be used as both integer and auto-formatted string

$finish

• Terminate simulation

$stop

• Pause simulation and debug

$readmemh(<fname>,<mem>,<start>,<end>);

$writememh(<fname>,<mem>,<start>,<end>);

• Load contents of ASCII file to memory array (and vice versa)

• Parameters <start>,<end> are optional

• Useful for loading initial images, dumping final images

Overview

• Why Verilog?

 High-level description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Parameters, Pre-processor, case statements, Common errors,
system tasks

• Sequential logic

• Test bench structure

• Case study, Verilog tools and Demo
CS/ECE 552, Spring 2008 47 CS/ECE 552, Spring 2008 48

Sequential Logic in Verilog

module dff
(q, d, clk, rst);

output q;
input d;
input clk;
input rst;
reg state;

assign #(1) q = state;
always @(posedge clk) begin
state = rst? 0 : d;
end
endmodule

Use the Homework Modules provided-
Instantiate the dff module given for all FFs

1 bit

D

Flip

flop

d q

clk

rst

2/1/2013

13

CS/ECE 552, Spring 2008 49

Designing Sequential Logic

• CS/ECE 552 design rule: separate combinational logic from
sequential state elements in lowest-level modules

• Not enforced by Verilog, but a very good idea

• Possible exceptions: counters, shift registers

• We’ll give you a 1-bit flip-flop module (see previous slide)

• Edge-triggered, not a latch

• Use it to build n-bit register, registers with “load” inputs, etc.

• Example use: state machine

Combinational

Logic

State

Register

Outputs

Next State

Current

State

Clock
Inputs

CS/ECE 552, Spring 2008 50

Clocks Signals

• Clocks signals are not normal signals

• Travel on dedicated “clock” wires
• Reach all parts of the chip

• Special “low-skew” routing

• Ramifications:
• Never do logic operations on the clocks

• If you want to add a “write enable” to a flip-flop:

• Use a mux to route the old value back into it

• Do not just “and” the write-enable signal with the clock!

• Messing with the clock can cause errors
• Often can only be found using timing simulation

Overview

• Why Verilog?

 High-level description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Parameters, Pre-processor, case statements, Common errors,
system tasks

• Sequential logic

• Test bench structure

• Case study, Verilog tools and Demo
CS/ECE 552, Spring 2008 51

Verilog Simulation using Modelsim

Testbench

Setting up the mentor environment

Using modelsim (simple example: 4 bit register)
- Fixing compile errors

- Debugging functional errors (with waveforms)

Shortcut! Use wsrun.pl

Vcheck – check for illegal constructs

Pattern/Sequence detector

2/1/2013

14

Testbench – variant 1

Design

Stimulus

Outputs

And “visually” inspect the

outputs

Design

Stimulus

Outputs

Expected
Outputs

Pass / Fail

Visual inspection not

required!

Testbench – variant 2

Design

Sophisticated Test Environment
(To be used in the course project)

Inputs

Functional

model written

in other

languages

(eg. C)

Pass / Fail

Setting up the mentor environment

 Edit .bashrc or .bashrc.local

 Create mentor directory in home area,
copy over .location and edit it

 Find detailed instructions at:

oSidebar of Course home page -> “Tools” -> “Getting started with
Mentor”

ohttp://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//wiki/inde
x.php/Main/GettingStartedWithMentor

2/1/2013

15

Using modelsim (simple example: 4 bit register)

Interfaces:

What we are going to build:

 module reg_4bit(out, in, wr_en, clk, rst)

What we have to start with:

 module dff (q, d, clk, rst);

reg_4bit_bench

reg_4bit

clkrst

dff_en

dff_en

dff_en

dff_en

dff dff dff dff

Using modelsim
(simple example: 4 bit register)

Shortcut! Use wsrun.pl

wsrun.pl -wave reg4bit_bench *.v

Find detailed instructions at:

oSidebar of Course home page -> “Command-line Simulation”

ohttp://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//wiki/inde
x.php/Main/Command-lineVerilogSimulationTutorial

Vcheck – check for illegal constructs

Limited subset of verilog constructs allowed in
CS552

Restriction is only for the “Design”

Testbench can use any valid verilog syntax

3 ways to run the checks. Find detailed
instructions at:

oSidebar of Course home page -> “Tools” -> “Verilog
Rules Check”

ohttp://pages.cs.wisc.edu/~karu/courses/cs552/spring20
13//wiki/index.php/Main/VerilogRulesCheck

2/1/2013

16

Pattern/Sequence detector

Pattern: 1101

Pattern/Sequence detector

 Use binary numbers to encode state

 Current state: 4 bit binary number: Q2 Q1 Q0

 Next state: 4 bit binary number: Q2n Q1n Q0n

Pattern/Sequence detector

Q2 Q1 Q0 InA Q2n Q1n Q0n

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 0 0

0 0 1 1 0 1 0

0 1 0 0 0 1 1

0 1 0 1 0 1 0

0 1 1 0 0 0 0

0 1 1 1 1 0 0

1 0 0 0 0 0 0

1 0 0 1 0 1 0

X X X X X X X

 Out = f (Q2, Q1, Q0)

 Q2n = f (Q2, Q1, Q0, InA)

 Q1n = f (Q2, Q1, Q0, InA)

 Q0n = f (Q2, Q1, Q0, InA)

 Out = Q2

 Q2n = Q2’ Q1 Q0 InA

 Q1n = Q2’ Q1’ Q0 InA + Q2’ Q1 Q0’ InA’ + Q2’ Q1 Q0’ InA + Q2 Q1’ Q0’ InA

 Q0n = Q2’ Q1’ Q0’ InA + Q2’ Q1 Q0’ InA’ 64

• A sequence detector is sequential logic

• Design Rule: separate combinational logic from sequential
sate elements in lowest-level modules

• We will give you a 1-bit flip-flop module to hold state and a
clock/reset generator

- See the course web site

Combinational

Logic

State

Register

Outputs

Next State

Current

State

Clock
Inputs

Pattern/Sequence detector

2/1/2013

17

Pattern/Sequence detector

 Two ways to implement the “Combinational
logic” block.

 1) Implement the state equations using verilog bitwise

logical operators

 2) Use a case statement to specify the state transitions

