Verilog
For Computer Design

CS/ECE 552
Karu Sankaralingam

Based on slides from

Derek Hower (UW-Madison), Andy Phelphs (UW-Madison) and
Prof. Milo Martin(University of Pennsylvania)

CS/ECE 552, Spring 2008 1

Overview

e Why Verilog?
High-level description of Verilog

e \erilog Syntax
e Primitives
o Number Representation
e Modules and instances
e Wire and Reg Variables
e QOperators
e Miscellaneous

e Parameters, Pre-processor, case statements, Common errors,
system tasks
e Sequential logic
e Test bench structure

e (Case study, Verilog tools and Demo
CS/ECE 552, Spring 2008 2

Why Verilog and why not Manual design?

State of Art Design

Control Unit

PC][IM Register File

ALU

Hazard detection &
Data Forward Block

| =

T

ID/EX

IF/ID

EX/MEM

MEM/WB

Do you want to design this Processor manually?

How To Represent Hardware?

e If you're going to design a computer, you need to write
down the design so that:
e You can read it again later
e Someone else can read and understand it
e It can be simulated and verified
e Even software people may read it!
e [t can be synthesized into specific gates
e It can be built and shipped and make money($$$)

CS/ECE 552, Spring 2008

Ways to represent hardware:

e Draw schematics
e Hand-drawn (Seriously?)
e Machine-drawn

o Write a netlist — ASCII representation of Interconnect of a
schematic

e Z52BH 11234 (N123, N234, N4567);

e Write primitive Boolean equations
o AAA = abc DEF + ABC def

e Use a Hardware Description Language (HDL)
e assign overflow = c31 » c32;

CS/ECE 552, Spring 2008 5

Hardware Description Languages (HDLSs)

e Textual representation of a digital logic design
e Can represent specific gates, like a netlist, or more abstract logic

e HDLs are not “programming languages”
e No, really. Even if they look like it, they are not.
e For many people, a difficult conceptual leap

e Similar development chain
e Compiler: source code - assembly code - binary machine code
e Synthesis tool: HDL source - gate-level specification - hardware

CS/ECE 552, Spring 2008 6

What is an HDL? — “Think hardware”

if(x 1= 0) vs. if(x <=-1) || (x >= 1))
What hardware is generated here ?

module counter(clk,rst_n,cnt);

, e It looks like a programming language
input clk,rst_n;

output [3:0] ent; e It is NOT a programming language

reg [3:0] cnt; v Itis always critical to recall you
are describing hardware

always @(posedge clk) begin
v' This codes primary purpose is

if (~rst_n) to generate hardware
cnt = 4'b0000;
else v" The hardware this code
cnt = ent+1; describes (a counter) can be
end simulated on a computer. In this

secondary use of the language it
endmodule does act more like a
programming language.

Why an HDL is not a Programming Language

e In a program, we start at the beginning (e.g. “main”), and
we proceed sequentially through the code as directed

e The program represents an algorithm, a step-by-step
sequence of actions to solve some problem
for (i = 0; i<10; i=i+1) {
if (newPattern == oldPattern[i]) match = i;

)
e Hardware is all active at once; there is no starting point
A _:>7
JHL -
JHL -

CS/ECE 552, Spring 2008 ’ 8

Why Use an HDL?

- Enables Larger Designs
= More abstracted than schematics, allows larger designs.
v Register Transfer Level Description

v" Wide data paths (16, 32, or 64 bits wide) can be abstracted to
a single vector

v Synthesis tool does the bulk of the tedious repetitive work
v" Work at transistor/gate level for large designs: cumbersome

« Explore larger solution space
v Synthesis options can help optimize (power, area, speed)
v’ Synthesis options and coding styles can help examine tradeoffs
-Speed | Power | area

CS/ECE 552, Spring 2008

Why use an HDL? (continued)

e Easy to write and edit

e Compact

e Don't have to follow a maze of lines
e Easy to analyze with various tools

Why not to use an HDL

e You still need to visualize the flow of logic

e A schematic can be a work of art
e But often isn't! (My first Processor example ©)

CS/ECE 552, Spring 2008

10

Other Important HDL Features

 Are highly portable (text)

 Are self-documenting (when commented well)
« Describe multiple levels of abstraction

« Represent parallelism

 Provides many descriptive styles
Structural
Register Transfer Level (RTL)
Behavioral

« Serve as input for synthesis tools

11

Starting with an example...

module fulladd (input A, B, Cin,

output sum, Cout);

assign sum = A * B * Cin;
assign Cout = (A & B)| (A & Cin)| (B & Cin);
endmodule

Cin

CS/ECE 552, Spring 2008 12

Pitfalls of trying to “program” in Verilog

o If you program sequentially, the synthesizer may add a lot
of hardware to try to do what you say
o In last example, need a priority encoder
e If you program in parallel (multiple “always” blocks), you
can get non-deterministic execution — Race Condition
o Which “always” happens first?
e You create lots of state that you didn't intend
if (x==1) out =0;
if (y==1)out =1; // else out retains previous state? R-S latch!
e You don't realize how much hardware you're specifying
e X=X+ 1can bea LOT of hardware
e Slight changes may suddenly make your code “blow up”
e A chip that previously fit suddenly is too large or slow

CS/ECE 552, Spring 2008 13

Two Roles of HDL and Related Tools

o #1: Specifying digital logic
o Specify the logic that appears in final design
o FEither
e Translated automatically (called synthesis) or
e Optimized manually (automatically checked for equivalence)

e #2: Simulating and testing a design
e High-speed simulation is crucial for large designs
e Many HDL /nterpreters optimized for speed
e Testbench: code to test design, but not part of final design

CS/ECE 552, Spring 2008 14

Module Styles

« Modules can be specified different ways
Structural — connect primitives and modules
Dataflow— use continuous assignments
Behavioral — use initial and always blocks
A single module can use more than one of the above 3
coding styles!

What are the differences?

15

HDL Constructs

o Structural constructs specify actual hardware structures
e Low-level, direct correspondence to hardware
e Primitive gates (e.g., and, or, not)
e Hierarchical structures via modules
e Analogous to programming software in assembly

o RTl/Dataflow constructs specify an operation on bits
e High-level, more abstract
e Specified via equations, e.g., out = (a & b) |
e Behavioral — Describes behavior of the circuit
e Always , initial blocks, procedural assignments

e Not all behavioral constructs are synthesizable

o We've already talked about the pitfalls of trying to “program”

e But even some combinational logic won't synthesize well

e out=a% b // modulo operation — what does this synthesize to?
cs/ece sHlespwil) oo use: /| % > >= < <= >> << 16

Structural Example

module majority (major, V1, V2, V3) ;

output major ; |
iInput V1,Vv2,V3,; Vi :

wire N1, N2, N3: V2-+—

B
J s
and A0 (N1, V1, V2), V2-— "\ N2 .
Al (N2, V2,V3), o . —Mmajor
A2 (N3, V3, V1); V3 ; _/ g

or Or0(major, N1, N2, N3); V3 —r\ N3

endmodule

17

RTL/Dataflow Example

Continuous Assignment Statement

module majority (major, V1, V2, V3) ;

output major ;

input V1,V2,V3,;
. . Vi-—
assign major = V1 & V2 o]
| V2 & V3 V2 —|{ majority — major
| V1 & V3; .
endmodule V3

18

Behavioral Example

module majority (major, V1, V2, V3) ;

output reg major ;
input V1, Vv2,V3,;

always @(V1, V2, V3) begin

if (V1 && V2 || V2 && V3 vi_.
| V1 && V3) major =1, o -
else major = 0; V2 —{ majority — major
end
V3~

endmodule

19

Overview

e \erilog Syntax
e Primitives
o Number Representation
e Modules and instances
e Wire and Reg Variables
e QOperators
e Miscellaneous

e Parameters, Pre-processor, case statements, Common errors,
system tasks

o
CS/ECE 552, Spring 2008 20

Recall: Two Types of Digital Circuits

e Combinational Logic
e Logic without state variables
o Examples: adders, multiplexers, decoders, encoders
e No clock involved
* Not edge-triggered
e All “inputs” (RHS nets/variables) are triggers

e Sequential Logic (Details explained later)
e Logic with state variables
e State variables: latches, flip-flops, registers, memories
e Clocked - Edge-triggered by clock signal
e State machines, multi-cycle arithmetic, processors
e Only clock (and possibly reset) appear in trigger list
e Can include combinational logic that feeds a FF or register

CS/ECE 552, Spring 2008 21

Verilog Structural Primitives

No declaration; can only be instantiated
Imp * - All output ports appear in list before any input ports
Optional drive strength, delay, name of instance
Example: and N25 (Z, A, B, C); //instance name
Example: and #10 (Z, A, B, X); // delay
(X, C, D, E); //delay
[*Usually better to provide instance name for debugging.*/

Example: or N30 (SET, Q1, AB, N5),
N41 (N25, ABC, R1);
Example: and #10 N33(Z, A, B, X); // name + delay

1/24/2006

22

Number Representation

Format: <size><base format><number>

Examples:
6'b010_111 gives 010111
8'b0110 gives 00000110
8'b1110 gives 00001110

4'bx01 gives xx01

16'H3AB gives 0000001110101011
24 gives 0...0011000

5'036 gives 11100

16'Hx gIves XXXXXXXXXXXXXXXX

8'hz gives zzzzzz7z

1/24/2006

23

Connections — Module Instantiations

« By position association
module 2 to 4 decode (A, E_n, D);
4 to_16_decode DX (X[3:2], W_n, word);
A = X[3:2], EEn=W_n, D = word
« By name association (this is supposed to be used in HW
s and Projects)
module 2 to 4 decode (A, E_n, D);
C_2_4 decoder_with_enable DX (.E_n(W_n), .A(X[3:2]),
.D(word));
A = X[3:2], En=W_n, D = word

1/24/2006 24

Hierarchical Verilog Example

e Build up more complex modules using simpler modules

e Example: 4-bit wide mux from four 1-bit muxes
e Again, just “drawing” boxes and wires

module mux2tol 4 (
input [3:0] A,
input [3:0] B,

input Sel,

output [3:0] O);

mux2tol muxO
mux2tol muxl
mux2tol mux2
mux2tol mux3
endmodule

CS/ECE 552, Spring 2008

(Sel,
(Sel,
(Sel,
(Sel,

A[O],
All],
A[2],
A[3],

B[O],
B[1],
B[2],
B[3],

O[0]1);
O[1]1):
O[2]);
O[31);

25

Variables

* Nets (Also called as wires)

v' Used for structural connectivity
* Registers

v Abstraction of storage (May or may not be real physical storage)
« Properties of Both

v Informally called signals
v' May be either scalar (one bit) or vector (multiple bits)

1/24/2006 26

Verilog Module Example of wires

module mux2tol (
input S, A, B,

output 0); . . IS
. An B e .., 4
wire S _, S, BnSi o A :OD—
................. 1 :j:>“£l
not (S_, S); -~ e Bl H)*
and (AnS_, A, S_); b = H
and (BnS, B, S); T
or (O’ Ans—’ BnS);
endmodule

CS/ECE 552, Spring 2008 27

Net (wire) Examples

o \Wire vectors:
wire [7:0] W1; // 8 bits, wl[7] is MSB

e Also called “buses”

e (QOperations
e Bit select: W1[3]
e Range select: W1[3:2]
e Concatenate:
vec = {x, y, z};
{carry, sum} = vec[0:1];
e e.g., swap high and low-order bytes of 16-bit vector
wire [15:0] wl, w2;
assign w2 = {wl[7:0], wl[15:8]}

1/24/2006

28

Wire and Vector Assignment

e Wire assignment: “continuous assignment”

Connect combinational logic block or other wire to wire input

Order of statements not important to Verilog, executed
totally in parallel

But order of statements can be important to clarity of thought!

When right-hand-side changes, it immediately flows through to left
Designated by the keyword assign

wire cC;

assign c

wire c = a

b;

a |
| b; // same thing

CS/ECE 552, Spring 2008 29

Register Assignment

* A register may be assigned value only within:
v a procedural statement
v a user-defined sequential primitive
v' a task, or
v' a function.

« A reg object may never be assigned value by:
v a primitive gate output
v or a continuous assignment

Examples:
reg a, b, c;
reg [15:0] counter, shift_reg;
reg [8:4] flops;

1/24/2006

30

When to use wire and when reg !

= Wire

Module declaration = Inputs(Yes), Outputs (Yes)
Module instantiation = Connect input and output ports
Must be driven by something, cannot store values

Only legal type on left side of an assign statement

Not allowed on left side of = or <= in an always@ block
Most of the times combinational logic

Reg
Module instantiation = Input port (Yes) , Output Port (No)
Module declaration = Inputs(No), Outputs (Yes)

NN N N N X

Only legal type on left side of initial block(test bench)
Not Allowed on left side of an assign statement

Used for both sequential and combinational logic
CS/ECE 552, Spring 2008

NN N N X X

Only legal type on left side of = or <= in an always@ block

Operators

e Operators similar to C or Java

e On wires:
e & (and), | (or), ~ (not), ™ (xor)
e On vectors:
o & |, ~, ™ (bit-wise operation on all wires in vector)
e E.g., assign vecl = vec2 & vec3;
e &, |, ™ (reduction on the vector)
e E.g., assign wirel = | vecl;
e Even ==, != (comparisons)

Can be arbitrarily nested: (a & ~b) | c

CS/ECE 552, Spring 2008

32

Conditional Operator

e Verilog supports the ?: conditional operator

e Just like in C
e But much more common in Verilog

e Examples:
assign out = S ? B : A;

sel == 2'b00 ? a :
sel == 2'b01 ? b :
? C
? d

assign out
sel == 2'bl0
sel == 2'bll

e What do these do?

CS/ECE 552, Spring 2008

33

Overview

Miscellaneous

e Parameters, Pre-processor, case statements, Common errors,
system tasks

o
CS/ECE 552, Spring 2008 34

Parameters

o Allow per-instantiation module parameters
o Use "parameter” statement

e modname #(10, 20, 30) instname(inl, outl);
e Example:

module mux2tol N(Sel, A, B, O);

parameter N =1

input [N-1:0] A;

input [N-1:0] B;

input Sel;

output [N-1:0] O;

mux2tol muxO[N-1:0] (Sel, A, B, O);
endmodule

Mux2tol N #(4) muxl (S, inl, in2, out)
CS/ECE 552, Spring 2008 35

Verilog Pre-Processor

o Like the C pre-processor
e But uses ° (back-tick) instead of #
e Constants: "define
e No parameterized macros

e Use ' before expanding constant macro
"define letter A 8'h4l

wire w = ‘letter;A;
e Conditional compilation: “ifdef, "endif
e File inclusion: "include

e Parameter vs "define
e Parameter only for “per instance” constants
e define for “global” constants

CS/ECE 552, Spring 2008

36

Common Errors

e Tools are from a less gentle time
e More like C, less like Java
e Assume that you mean what you say

e Common errors:
e Not assigning a wire a value
e Assigning a wire a value more than once

e Avoid names such as:
e clock, power, pwr, ground, gnd, vdd, vcg, init, reset
e Some of these are “special” and will silently cause errors
e We will use “clk” and “rst”, but only for their intended uses

CS/ECE 552, Spring 2008

37

Verilog in Project / Homework

« Use the primitive modules and other basic modules given
in course webpage for your ‘design’

« Follow the Verilog rules only for Design

* You are free to use your own test bench

* Only use the specified Verilog Keywords, allowed operators
« Go through the usage examples

« Ask TA s if you are experiencing any difficulty in following
these guidelines.

CS/ECE 552, Spring 2008

Non-binary Hardware Values

e A hardware signal can have four values
0, 1
X: don't know, don't care
Z: high-impedance (no current flowing)

e Two meanings of “x”
e Simulator indicating an unknown state
e Or: You telling synthesis tool you don't care
e Synthesis tool makes the most convenient circuit (fast, small)
e Use with care, leads to synthesis dependent operation

e Uses for "z"
o Tri-state devices drive a zero, one, or nothing (z)
e Many tri-states drive the same wire, all but one must be "z
e Example: multiplexer

A\ /4

CS/ECE 552, Spring 2008 39

Case Statements

case (<expr>)
<match-constantl>:<stmt>
<match-constant2>:<stmt>
<match-constant3>,<match-constant4d>:<stmt>
default: <stmt>

endcase

CS/ECE 552, Spring 2008

40

Case Statements

e Useful to make big muxes
o \ery useful for “next-state” logic
e But they are easy to abuse

e If you don't set a value, it retains its previous state
e Which is a latch!

e We will allow case statements, but with some severe
restrictions:
e Every value is set in every case
e Every possible combination of select inputs must be covered
e Each case lives in its own “always” block, sensitive to changes in all
of its input signals
e This is our only use of “always” blocks

CS/ECE 552, Spring 2008 41

Different types of Case statements

Verilog has three types of case statements:
case, casex, and casez

" Performs bitwise match of expression and case item
* Both must have same bitwidth to match!
" case
* Can detect x and z! (good for testbenches)
" casez
e Uses zand ? as “don’t care” bits in case items and expression

" casex

* Uses X, z, and ? as “don’t care” bits in case items and
expression

CS/ECE 552, Spring 2008

Case Statement Example

always @*

casex ({goBack, currentState, inputA, inputB})

6'bl_??? ? ? :
6'b0_000 0 _?:
6'b0_000_1 ?:
6'b0 001 1 ?:
6'b0_001_0 O:
6'b0 _001_0 1:
6'b0_010_? O0:
6'b0_010 _? 1:
6'b0 011 ? 1:
6'b0 011 ? O0:
6'b0_100 _? ?:
6'b0 101 ? ?:
6'b0_110 ? ?:
6'b0_111 ? ?:
default:
endcase

CS/ECE 552, Spring 2008

begin out = 0; newState = 3'b000; err=0; end
begin out = 0; newState = 3'b000; err=0; end
begin out = 0; newState = 3'b001; err=0; end
begin out = 0; newState = 3'b001; err=0; end
begin out = 0; newState = 3'b010; err=0; end
begin out = 0; newState = 3'b011; err=0; end
begin out = 0; newState = 3'b010; err=0; end
begin out = 0; newState = 3'b011; err=0; end
begin out = 0; newState = 3'b011; err=0; end
begin out = 0; newState = 3'b100; err=0; end
begin out = 1; newState = 3'b000; err=0; end
begin out = 0; newState = 3'b000; err=1; end
begin out = 0; newState = 3'b000; err=1; end
begin out = 0; newState = 3'b000; err=1; end
begin out = 0; newState = 3'b000; err=1; end

43

What happens if it's wrong?

Here are our rules:

e A case statement should always have a default
e Hitting this default is an error

e Every module has an “err” output

e (Can be used for other checks, like illegal inputs

e OR together all “err” signals -- bring “err” all the way to
top

e Our clock/reset module will print a message if err ==

CS/ECE 552, Spring 2008 44

System tasks

o Start with $

e For output:
Sdisplay (<fmtstring><,signal>*) ;
S$fdisplay (<fhandle>,<fmtstring><,signal>*) ;
e Signal printf/fprintf

Smonitor (<fmtstring><,signal>¥*);
o Non-procedural printf, prints out when a signal changes

Sdumpvars (1<, signal>¥*) ;

e Similar to monitor

e VCD format for waveform viewing (gtkwave)
e Qutput is in dumpfile.vcd

CS/ECE 552, Spring 2008

45

More System Tasks

Stime
e Simulator’s internal clock (64-bit unsigned)
e Can be used as both integer and auto-formatted string
$finish
e Terminate simulation
Sstop
e Pause simulation and debug
Sreadmemh (<fname>,<mem>,<start>,<end>) ;
Swritememh (<fname>,<mem>,<start>,<end>) ;
e Load contents of ASCII file to memory array (and vice versa)
e Parameters <start>,<end> are optional
e Useful for loading initial images, dumping final images

CS/ECE 552, Spring 2008 46

Overview

e Sequential logic

o
CS/ECE 552, Spring 2008

47

Sequential Logic in Verilog

Use the Homework Modules provided-

Instantiate the dff module given for all FFs
rst

module dff
(q, d, clk, rst);

output q;
input d; d
input clk;
input rst;
reg state;

clk

assign #(1) q = state;
always @(posedge clk) begin
state =rst?0:d;

end

endmodule

CS/ECE 552, Spring 2008

48

Designing Sequential Logic

e CS/ECE 552 design rule: separate combinational logic from
sequential state elements in lowest-level modules
e Not enforced by Verilog, but a very good idea
» Possible exceptions: counters, shift registers
o We'll give you a 1-bit flip-flop module (see previous slide)
e Edge-triggered, not a latch
e Use it to build n-bit register, registers with “load” inputs, etc.

e Example use: state machine

Inputs
Clock P R
o Outputs
l State I Combinational
EL[SEIg Current Logic
State
Next State

CS/ECE 552, Spring 2008 49

Clocks Signals

e (Clocks signals are not normal signals

e Travel on dedicated “clock” wires
e Reach all parts of the chip
e Special “low-skew” routing

e Ramifications:
e Never do logic operations on the clocks
e If you want to add a “write enable” to a flip-flop:
e Use a mux to route the old value back into it
e Do not just “and” the write-enable signal with the clock!

e Messing with the clock can cause errors
e Often can only be found using timing simulation

CS/ECE 552, Spring 2008

50

Overview

e Test bench structure

o Case study, Verilog tools and Demo
CS/ECE 552, Spring 2008

51

Verilog Simulation using Modelsim

.Testbench
.Setting up the mentor environment

.Using modelsim (simple example: 4 bit register)
- Fixing compile errors

- Debugging functional errors (with waveforms)

.Shortcut! Use wsrun.pl
.Vcheck — check for illegal constructs
.Pattern/Sequence detector

Testbench — variant 1

And “visually” inspect the
outputs

Testbench — variant 2

Sophisticated Test Environment
(To be used in the course project)

Inputs

Functional
model written
in other
languages

(eg. C)

Pass / Fall

Setting up the mentor environment

o Edit .bashrc or .bashrc.local

» Create mentor directory in home area,
copy over .location and edit it

« FInd detailed instructions at:

-Sidebar of Course home page -> “Tools” -> “Getting started with
Mentor”

-http://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//wiki/inde
X.php/Main/GettingStartedWithMentor

Using modelsim (simple example: 4 bit register)

Interfaces:
What we are going to build:

module reg_4bit(out, in, wr_en, clk, rst)
.\WWhat we have to start with:

module dff (q, d, clk, rst);

Using modelsim
(simple example: 4 bit register)

reg_4bit_bench

clkrst

Shortcut! Use wsrun.pl

-wsrun.pl -wave reg4bit_bench *.v
.Find detailed instructions at:

-Sldebar of Course home page -> “Command-line Simulation”

-http://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//wiki/inde
X.php/Main/Command-lineVerilogSimulationTutorial

Vcheck — check for illegal constructs

.Limited subset of verilog constructs allowed In
CS552

-Restriction is only for the “Design”
«Testbench can use any valid verilog syntax

.3 ways to run the checks. Find detailed
Instructions at:

-Sidebar of Course home page -> “Tools” -> “Verilog
Rules Check”

-http://pages.cs.wisc.edu/~karu/courses/cs552/spring20
13//wiki/index.php/Main/VerilogRulesCheck

Pattern/Sequence detector

Pattern: 1101

Pattern/Sequence detector

« Use binary numbers to encode state
« Current state: 4 bit binary number: Q2 Q1 QO
« Next state: 4 bit binary number: Q2, Q1. QO,

Pattern/Sequence detector

Q2 |Q1 |Q0 |InA |Q2, |Q1, |QO,
6o 0 0 0 0 0 0
0 0 0 10 0 1 ,0ut=f(Q2 QL Q)
6o 0o 1 0 0 0 0
o o 1t 1t 0 1 0 . Q2,=1(Q2, Q1, QO, InA)
010 0 0 11 .QL=f(Q2 QL Q0 InA)
o t o0 1 0 1t 0
0 1 1 0 0 0 0 * Qon =f (Q2, Q1, QO, InA)
o t 1 1 1 0 0
i 0 0 0 0 0 0
1 0 o0 1 0 1 0
X X X X X X X
« Out = Q2

. Q2,=Q2 Q1 QO InA
.Q1,=Q2 Q1 Q0 InA + Q2 Q1 QU InA’ + Q2' Q1 Q0’ InA + Q2 Q1" QO’ InA
.Q0, = Q2 Q1 QO InA + Q2' Q1 QO InA’

Pattern/Sequence detector

e A sequence detector is sequential logic

e Design Rule: separate combinational logic from sequential
sate elements in lowest-level modules

e We will give you a 1-bit flip-flop module to hold state and a
clock/reset generator

- See the course web site

Cloc Inputs

Outputs'

Current .
State

Next State

64

Pattern/Sequence detector

« TWo ways to implement the “Combinational
logic” block.

1) Implement the state equations using verilog bitwise
logical operators

2) Use a case statement to specify the state transitions

