
CS/ECE 552, Spring 2008 1

Verilog
For Computer Design

CS/ECE 552

Karu Sankaralingam

Based on slides from

Derek Hower (UW-Madison), Andy Phelphs (UW-Madison) and
Prof. Milo Martin(University of Pennsylvania)

Overview

• Why Verilog?

 High-level description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Parameters, Pre-processor, case statements, Common errors,
system tasks

• Sequential logic

• Test bench structure

• Case study, Verilog tools and Demo
CS/ECE 552, Spring 2008 2

Why Verilog and why not Manual design?

State of Art Design

Do you want to design this Processor manually?

CS/ECE 552, Spring 2008 4

How To Represent Hardware?

• If you’re going to design a computer, you need to write
down the design so that:

• You can read it again later

• Someone else can read and understand it

• It can be simulated and verified

• Even software people may read it!

• It can be synthesized into specific gates

• It can be built and shipped and make money($$$)

CS/ECE 552, Spring 2008 5

Ways to represent hardware:

• Draw schematics

• Hand-drawn (Seriously?)

• Machine-drawn

• Write a netlist – ASCII representation of Interconnect of a
schematic

• Z52BH I1234 (N123, N234, N4567);

• Write primitive Boolean equations

• AAA = abc DEF + ABC def

• Use a Hardware Description Language (HDL)

• assign overflow = c31 ^ c32;

CS/ECE 552, Spring 2008 6

Hardware Description Languages (HDLs)

• Textual representation of a digital logic design

• Can represent specific gates, like a netlist, or more abstract logic

• HDLs are not “programming languages”

• No, really. Even if they look like it, they are not.

• For many people, a difficult conceptual leap

• Similar development chain

• Compiler: source code assembly code binary machine code

• Synthesis tool: HDL source gate-level specification hardware

7

What is an HDL? – “Think hardware”

module counter(clk,rst_n,cnt);

 input clk,rst_n;

 output [3:0] cnt;

 reg [3:0] cnt;

 always @(posedge clk) begin

 if (~rst_n)

 cnt = 4’b0000;

 else

 cnt = cnt+1;

 end

endmodule

• It looks like a programming language

• It is NOT a programming language

 It is always critical to recall you
are describing hardware

 This codes primary purpose is
to generate hardware

 The hardware this code
describes (a counter) can be

simulated on a computer. In this
secondary use of the language it

does act more like a
programming language.

if(x != 0) vs. if((x <= -1) || (x >= 1))
What hardware is generated here ?

CS/ECE 552, Spring 2008 8

Why an HDL is not a Programming Language

• In a program, we start at the beginning (e.g. “main”), and
we proceed sequentially through the code as directed

• The program represents an algorithm, a step-by-step
sequence of actions to solve some problem

 for (i = 0; i<10; i=i+1) {

 if (newPattern == oldPattern[i]) match = i;

 }

• Hardware is all active at once; there is no starting point

Why Use an HDL?

• Enables Larger Designs

 More abstracted than schematics, allows larger designs.

 Register Transfer Level Description

 Wide data paths (16, 32, or 64 bits wide) can be abstracted to
a single vector

 Synthesis tool does the bulk of the tedious repetitive work

 Work at transistor/gate level for large designs: cumbersome

• Explore larger solution space

 Synthesis options can help optimize (power, area, speed)

 Synthesis options and coding styles can help examine tradeoffs

-Speed | Power | area

CS/ECE 552, Spring 2008

CS/ECE 552, Spring 2008 10

Why use an HDL? (continued)

• Easy to write and edit

• Compact

• Don’t have to follow a maze of lines

• Easy to analyze with various tools

Why not to use an HDL

• You still need to visualize the flow of logic

• A schematic can be a work of art

• But often isn’t! (My first Processor example )

11

Other Important HDL Features

• Are highly portable (text)

• Are self-documenting (when commented well)

• Describe multiple levels of abstraction

• Represent parallelism

• Provides many descriptive styles

Structural

Register Transfer Level (RTL)

Behavioral

• Serve as input for synthesis tools

CS/ECE 552, Spring 2008 12

Starting with an example…

module fulladd (input A, B, Cin,

 output sum, Cout);

assign sum = A ^ B ^ Cin;

assign Cout = (A & B)| (A & Cin)| (B & Cin);

endmodule

Cin

A

B

Sum

Cout

1 bit Full

Adder

CS/ECE 552, Spring 2008 13

Pitfalls of trying to “program” in Verilog

• If you program sequentially, the synthesizer may add a lot
of hardware to try to do what you say
• In last example, need a priority encoder

• If you program in parallel (multiple “always” blocks), you
can get non-deterministic execution – Race Condition
• Which “always” happens first?

• You create lots of state that you didn’t intend
if (x == 1) out = 0;

if (y == 1) out = 1; // else out retains previous state? R-S latch!

• You don’t realize how much hardware you’re specifying
• x = x + 1 can be a LOT of hardware

• Slight changes may suddenly make your code “blow up”
• A chip that previously fit suddenly is too large or slow

CS/ECE 552, Spring 2008 14

Two Roles of HDL and Related Tools

• #1: Specifying digital logic

• Specify the logic that appears in final design

• Either

• Translated automatically (called synthesis) or

• Optimized manually (automatically checked for equivalence)

• #2: Simulating and testing a design

• High-speed simulation is crucial for large designs

• Many HDL interpreters optimized for speed

• Testbench: code to test design, but not part of final design

15

Module Styles

• Modules can be specified different ways

Structural – connect primitives and modules

Dataflow– use continuous assignments

Behavioral – use initial and always blocks

• A single module can use more than one of the above 3
coding styles!

What are the differences?

CS/ECE 552, Spring 2008 16

HDL Constructs

• Structural constructs specify actual hardware structures

• Low-level, direct correspondence to hardware

• Primitive gates (e.g., and, or, not)

• Hierarchical structures via modules

• Analogous to programming software in assembly

• RTL/Dataflow constructs specify an operation on bits

• High-level, more abstract

• Specified via equations, e.g., out = (a & b) | c

• Behavioral – Describes behavior of the circuit

• Always , initial blocks, procedural assignments

• Not all behavioral constructs are synthesizable

• We’ve already talked about the pitfalls of trying to “program”

• But even some combinational logic won’t synthesize well

• out = a % b // modulo operation – what does this synthesize to?

• We will not use: / % > >= < <= >> <<

17

Structural Example

module majority (major, V1, V2, V3) ;

output major ;
input V1, V2, V3 ;

wire N1, N2, N3;

and A0 (N1, V1, V2),
 A1 (N2, V2, V3),
 A2 (N3, V3, V1);

or Or0 (major, N1, N2, N3);

endmodule

V1
V2

V2
V3

V3
V1

major

N1

N2

N3

A0

A1

A2

Or0

majority

18

RTL/Dataflow Example

module majority (major, V1, V2, V3) ;

output major ;
input V1, V2, V3 ;

assign major = V1 & V2
 | V2 & V3
 | V1 & V3;

endmodule

V1

V2

V3

major majority

Continuous Assignment Statement

19

Behavioral Example

module majority (major, V1, V2, V3) ;

output reg major ;
input V1, V2, V3 ;

always @(V1, V2, V3) begin

 if (V1 && V2 || V2 && V3
 || V1 && V3) major = 1;

 else major = 0;
end

endmodule

V1

V2

V3

major majority

Overview

• Why Verilog?

 High-level description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Parameters, Pre-processor, case statements, Common errors,
system tasks

• Sequential logic

• Test bench structure

• Case study, Verilog tools and Demo
CS/ECE 552, Spring 2008 20

CS/ECE 552, Spring 2008 21

Recall: Two Types of Digital Circuits

• Combinational Logic

• Logic without state variables

• Examples: adders, multiplexers, decoders, encoders

• No clock involved

• Not edge-triggered

• All “inputs” (RHS nets/variables) are triggers

• Sequential Logic (Details explained later)

• Logic with state variables

• State variables: latches, flip-flops, registers, memories

• Clocked - Edge-triggered by clock signal

• State machines, multi-cycle arithmetic, processors

• Only clock (and possibly reset) appear in trigger list

• Can include combinational logic that feeds a FF or register

1/24/2006

22

Verilog Structural Primitives

No declaration; can only be instantiated
Imp * - All output ports appear in list before any input ports
Optional drive strength, delay, name of instance
Example: and N25 (Z, A, B, C); //instance name
Example: and #10 (Z, A, B, X); // delay
 (X, C, D, E); //delay
/*Usually better to provide instance name for debugging.*/

Example: or N30 (SET, Q1, AB, N5),
 N41 (N25, ABC, R1);
Example: and #10 N33(Z, A, B, X); // name + delay

1/24/2006 23

Number Representation

Examples:
6’b010_111 gives 010111

8'b0110 gives 00000110

8’b1110 gives 00001110

4'bx01 gives xx01

16'H3AB gives 0000001110101011

24 gives 0…0011000

5'O36 gives 11100

16'Hx gives xxxxxxxxxxxxxxxx

8'hz gives zzzzzzzz

Format: <size><base_format><number>

1/24/2006 24

Connections – Module Instantiations

• By position association

module 2_to_4_decode (A, E_n, D);

4_to_16_decode DX (X[3:2], W_n, word);

A = X[3:2], E_n = W_n, D = word

• By name association (this is supposed to be used in HW
s and Projects)

module 2_to_4_decode (A, E_n, D);

C_2_4_decoder_with_enable DX (.E_n(W_n), .A(X[3:2]),
.D(word));

A = X[3:2], E_n = W_n, D = word

CS/ECE 552, Spring 2008 25

Hierarchical Verilog Example

• Build up more complex modules using simpler modules

• Example: 4-bit wide mux from four 1-bit muxes

• Again, just “drawing” boxes and wires

module mux2to1_4(

 input [3:0] A,

 input [3:0] B,

 input Sel,

 output [3:0] O);

 mux2to1 mux0 (Sel, A[0], B[0], O[0]);

 mux2to1 mux1 (Sel, A[1], B[1], O[1]);

 mux2to1 mux2 (Sel, A[2], B[2], O[2]);

 mux2to1 mux3 (Sel, A[3], B[3], O[3]);

endmodule

1/24/2006 26

Variables

• Nets (Also called as wires)
 Used for structural connectivity

• Registers
 Abstraction of storage (May or may not be real physical storage)

• Properties of Both
 Informally called signals

 May be either scalar (one bit) or vector (multiple bits)

CS/ECE 552, Spring 2008 27

Verilog Module Example of wires

module mux2to1(

 input S, A, B,

 output O);

 wire S_, AnS_, BnS;

 not (S_, S);

 and (AnS_, A, S_);

 and (BnS, B, S);

 or (O, AnS_, BnS);

endmodule

S

O

B

A

1/24/2006 28

Net (wire) Examples

• Wire vectors:
 wire [7:0] W1; // 8 bits, w1[7] is MSB

• Also called “buses”

• Operations

• Bit select: W1[3]

• Range select: W1[3:2]

• Concatenate:

vec = {x, y, z};

{carry, sum} = vec[0:1];

• e.g., swap high and low-order bytes of 16-bit vector

wire [15:0] w1, w2;

assign w2 = {w1[7:0], w1[15:8]}

CS/ECE 552, Spring 2008 29

Wire and Vector Assignment

• Wire assignment: “continuous assignment”

• Connect combinational logic block or other wire to wire input

• Order of statements not important to Verilog, executed
totally in parallel

• But order of statements can be important to clarity of thought!

• When right-hand-side changes, it immediately flows through to left

• Designated by the keyword assign

wire c;

assign c = a | b;

wire c = a | b; // same thing

1/24/2006 30

Register Assignment

• A register may be assigned value only within:
 a procedural statement

 a user-defined sequential primitive

 a task, or

 a function.

• A reg object may never be assigned value by:
 a primitive gate output

 or a continuous assignment

Examples:

 reg a, b, c;

 reg [15:0] counter, shift_reg;

 reg [8:4] flops;

When to use wire and when reg !

 Wire

 Module declaration = Inputs(Yes), Outputs (Yes)

 Module instantiation = Connect input and output ports

 Must be driven by something, cannot store values

 Only legal type on left side of an assign statement

 Not allowed on left side of = or <= in an always@ block

 Most of the times combinational logic

 Reg

 Module instantiation = Input port (Yes) , Output Port (No)

 Module declaration = Inputs(No), Outputs (Yes)

 Only legal type on left side of = or <= in an always@ block

 Only legal type on left side of initial block(test bench)

 Not Allowed on left side of an assign statement

 Used for both sequential and combinational logic

• Module Instantiation

CS/ECE 552, Spring 2008

CS/ECE 552, Spring 2008 32

Operators

• Operators similar to C or Java

• On wires:
• & (and), | (or), ~ (not), ^ (xor)

• On vectors:
• &, |, ~, ^ (bit-wise operation on all wires in vector)

• E.g., assign vec1 = vec2 & vec3;

• &, |, ^ (reduction on the vector)

• E.g., assign wire1 = | vec1;

• Even ==, != (comparisons)

 Can be arbitrarily nested: (a & ~b) | c

CS/ECE 552, Spring 2008 33

Conditional Operator

• Verilog supports the ?: conditional operator

• Just like in C

• But much more common in Verilog

• Examples:
assign out = S ? B : A;

assign out = sel == 2'b00 ? a :

 sel == 2'b01 ? b :

 sel == 2'b10 ? c :

 sel == 2'b11 ? d : 1'b0;

• What do these do?

Overview

• Why Verilog?

 High-level description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Parameters, Pre-processor, case statements, Common errors,
system tasks

• Sequential logic

• Test bench structure

• Case study, Verilog tools and Demo
CS/ECE 552, Spring 2008 34

CS/ECE 552, Spring 2008 35

Parameters

• Allow per-instantiation module parameters

• Use “parameter” statement

• modname #(10, 20, 30) instname(in1, out1);

• Example:

module mux2to1_N(Sel, A, B, O);

 parameter N = 1

 input [N-1:0] A;

 input [N-1:0] B;

 input Sel;

 output [N-1:0] O;

 mux2to1 mux0[N-1:0] (Sel, A, B, O);

endmodule

…

Mux2to1_N #(4) mux1 (S, in1, in2, out)

CS/ECE 552, Spring 2008 36

Verilog Pre-Processor

• Like the C pre-processor
• But uses ` (back-tick) instead of #

• Constants: `define

• No parameterized macros

• Use ` before expanding constant macro

`define letter_A 8’h41

wire w = `letter_A;

• Conditional compilation: `ifdef, `endif

• File inclusion: `include

• Parameter vs `define

• Parameter only for “per instance” constants

• `define for “global” constants

CS/ECE 552, Spring 2008 37

Common Errors

• Tools are from a less gentle time

• More like C, less like Java

• Assume that you mean what you say

• Common errors:

• Not assigning a wire a value

• Assigning a wire a value more than once

• Avoid names such as:

• clock, power, pwr, ground, gnd, vdd, vcc, init, reset

• Some of these are “special” and will silently cause errors

• We will use “clk” and “rst”, but only for their intended uses

Verilog in Project / Homework

• Use the primitive modules and other basic modules given
in course webpage for your ‘design’

• Follow the Verilog rules only for Design

• You are free to use your own test bench

• Only use the specified Verilog Keywords, allowed operators

• Go through the usage examples

• Ask TA s if you are experiencing any difficulty in following
these guidelines.

CS/ECE 552, Spring 2008

CS/ECE 552, Spring 2008 39

Non-binary Hardware Values

• A hardware signal can have four values
0, 1

X: don’t know, don’t care

Z: high-impedance (no current flowing)

• Two meanings of “x”
• Simulator indicating an unknown state

• Or: You telling synthesis tool you don’t care

• Synthesis tool makes the most convenient circuit (fast, small)

• Use with care, leads to synthesis dependent operation

• Uses for “z”
• Tri-state devices drive a zero, one, or nothing (z)

• Many tri-states drive the same wire, all but one must be “z”

• Example: multiplexer

CS/ECE 552, Spring 2008 40

Case Statements

case (<expr>)

<match-constant1>:<stmt>

<match-constant2>:<stmt>

<match-constant3>,<match-constant4>:<stmt>

default: <stmt>

endcase

CS/ECE 552, Spring 2008 41

Case Statements

• Useful to make big muxes

• Very useful for “next-state” logic

• But they are easy to abuse

• If you don’t set a value, it retains its previous state

• Which is a latch!

• We will allow case statements, but with some severe
restrictions:

• Every value is set in every case

• Every possible combination of select inputs must be covered

• Each case lives in its own “always” block, sensitive to changes in all
of its input signals

• This is our only use of “always” blocks

Different types of Case statements

Verilog has three types of case statements:
case, casex, and casez

 Performs bitwise match of expression and case item

• Both must have same bitwidth to match!

 case

• Can detect x and z! (good for testbenches)

 casez

• Uses z and ? as “don’t care” bits in case items and expression

 casex

• Uses x, z, and ? as “don’t care” bits in case items and

expression

CS/ECE 552, Spring 2008

CS/ECE 552, Spring 2008 43

Case Statement Example

always @*

 casex ({goBack, currentState, inputA, inputB})
 6'b1_???_?_? : begin out = 0; newState = 3'b000; err=0; end
 6'b0_000_0_? : begin out = 0; newState = 3'b000; err=0; end

 6'b0_000_1_? : begin out = 0; newState = 3'b001; err=0; end
 6'b0_001_1_? : begin out = 0; newState = 3'b001; err=0; end
 6'b0_001_0_0 : begin out = 0; newState = 3'b010; err=0; end

 6'b0_001_0_1 : begin out = 0; newState = 3'b011; err=0; end
 6'b0_010_?_0 : begin out = 0; newState = 3'b010; err=0; end
 6'b0_010_?_1 : begin out = 0; newState = 3'b011; err=0; end

 6'b0_011_?_1 : begin out = 0; newState = 3'b011; err=0; end
 6'b0_011_?_0 : begin out = 0; newState = 3'b100; err=0; end
 6'b0_100_?_? : begin out = 1; newState = 3'b000; err=0; end

 6'b0_101_?_? : begin out = 0; newState = 3'b000; err=1; end
 6'b0_110_?_? : begin out = 0; newState = 3'b000; err=1; end
 6'b0_111_?_? : begin out = 0; newState = 3'b000; err=1; end

 default: begin out = 0; newState = 3’b000; err=1; end
 endcase

CS/ECE 552, Spring 2008 44

What happens if it’s wrong?

Here are our rules:

• A case statement should always have a default

• Hitting this default is an error

• Every module has an “err” output

• Can be used for other checks, like illegal inputs

• OR together all “err” signals -- bring “err” all the way to
top

• Our clock/reset module will print a message if err ==1

CS/ECE 552, Spring 2008 45

System tasks

• Start with $

• For output:
$display(<fmtstring><,signal>*);

$fdisplay(<fhandle>,<fmtstring><,signal>*);

• Signal printf/fprintf

$monitor(<fmtstring><,signal>*);

• Non-procedural printf, prints out when a signal changes

$dumpvars(1<,signal>*);

• Similar to monitor

• VCD format for waveform viewing (gtkwave)

• Output is in dumpfile.vcd

CS/ECE 552, Spring 2008 46

More System Tasks

 $time

• Simulator’s internal clock (64-bit unsigned)

• Can be used as both integer and auto-formatted string

$finish

• Terminate simulation

$stop

• Pause simulation and debug

$readmemh(<fname>,<mem>,<start>,<end>);

$writememh(<fname>,<mem>,<start>,<end>);

• Load contents of ASCII file to memory array (and vice versa)

• Parameters <start>,<end> are optional

• Useful for loading initial images, dumping final images

Overview

• Why Verilog?

 High-level description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Parameters, Pre-processor, case statements, Common errors,
system tasks

• Sequential logic

• Test bench structure

• Case study, Verilog tools and Demo
CS/ECE 552, Spring 2008 47

CS/ECE 552, Spring 2008 48

Sequential Logic in Verilog

module dff
(q, d, clk, rst);

output q;
input d;
input clk;
input rst;
reg state;

assign #(1) q = state;
always @(posedge clk) begin
state = rst? 0 : d;
end
endmodule

Use the Homework Modules provided-
Instantiate the dff module given for all FFs

1 bit

D

Flip

flop

d q

clk

rst

CS/ECE 552, Spring 2008 49

Designing Sequential Logic

• CS/ECE 552 design rule: separate combinational logic from
sequential state elements in lowest-level modules

• Not enforced by Verilog, but a very good idea

• Possible exceptions: counters, shift registers

• We’ll give you a 1-bit flip-flop module (see previous slide)

• Edge-triggered, not a latch

• Use it to build n-bit register, registers with “load” inputs, etc.

• Example use: state machine

Combinational

Logic

State

Register

Outputs

Next State

Current

State

Clock
Inputs

CS/ECE 552, Spring 2008 50

Clocks Signals

• Clocks signals are not normal signals

• Travel on dedicated “clock” wires
• Reach all parts of the chip

• Special “low-skew” routing

• Ramifications:
• Never do logic operations on the clocks

• If you want to add a “write enable” to a flip-flop:

• Use a mux to route the old value back into it

• Do not just “and” the write-enable signal with the clock!

• Messing with the clock can cause errors
• Often can only be found using timing simulation

Overview

• Why Verilog?

 High-level description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Parameters, Pre-processor, case statements, Common errors,
system tasks

• Sequential logic

• Test bench structure

• Case study, Verilog tools and Demo
CS/ECE 552, Spring 2008 51

Verilog Simulation using Modelsim

Testbench

Setting up the mentor environment

Using modelsim (simple example: 4 bit register)
- Fixing compile errors

- Debugging functional errors (with waveforms)

Shortcut! Use wsrun.pl

Vcheck – check for illegal constructs

Pattern/Sequence detector

Testbench – variant 1

Design

Stimulus

Outputs

And “visually” inspect the

outputs

Design

Stimulus

Outputs

Expected
Outputs

Pass / Fail

Visual inspection not

required!

Testbench – variant 2

Design

Sophisticated Test Environment
(To be used in the course project)

Inputs

Functional

model written

in other

languages

(eg. C)

Pass / Fail

Setting up the mentor environment

 Edit .bashrc or .bashrc.local

 Create mentor directory in home area,
copy over .location and edit it

 Find detailed instructions at:

oSidebar of Course home page -> “Tools” -> “Getting started with
Mentor”

ohttp://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//wiki/inde
x.php/Main/GettingStartedWithMentor

Using modelsim (simple example: 4 bit register)

Interfaces:

What we are going to build:

 module reg_4bit(out, in, wr_en, clk, rst)

What we have to start with:

 module dff (q, d, clk, rst);

reg_4bit_bench

reg_4bit

clkrst

dff_en

dff_en

dff_en

dff_en

dff dff dff dff

Using modelsim
(simple example: 4 bit register)

Shortcut! Use wsrun.pl

wsrun.pl -wave reg4bit_bench *.v

Find detailed instructions at:

oSidebar of Course home page -> “Command-line Simulation”

ohttp://pages.cs.wisc.edu/~karu/courses/cs552/spring2013//wiki/inde
x.php/Main/Command-lineVerilogSimulationTutorial

Vcheck – check for illegal constructs

Limited subset of verilog constructs allowed in
CS552

Restriction is only for the “Design”

Testbench can use any valid verilog syntax

3 ways to run the checks. Find detailed
instructions at:

oSidebar of Course home page -> “Tools” -> “Verilog
Rules Check”

ohttp://pages.cs.wisc.edu/~karu/courses/cs552/spring20
13//wiki/index.php/Main/VerilogRulesCheck

Pattern/Sequence detector

Pattern: 1101

Pattern/Sequence detector

 Use binary numbers to encode state

 Current state: 4 bit binary number: Q2 Q1 Q0

 Next state: 4 bit binary number: Q2n Q1n Q0n

Pattern/Sequence detector

Q2 Q1 Q0 InA Q2n Q1n Q0n

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 0 0

0 0 1 1 0 1 0

0 1 0 0 0 1 1

0 1 0 1 0 1 0

0 1 1 0 0 0 0

0 1 1 1 1 0 0

1 0 0 0 0 0 0

1 0 0 1 0 1 0

X X X X X X X

 Out = f (Q2, Q1, Q0)

 Q2n = f (Q2, Q1, Q0, InA)

 Q1n = f (Q2, Q1, Q0, InA)

 Q0n = f (Q2, Q1, Q0, InA)

 Out = Q2

 Q2n = Q2’ Q1 Q0 InA

 Q1n = Q2’ Q1’ Q0 InA + Q2’ Q1 Q0’ InA’ + Q2’ Q1 Q0’ InA + Q2 Q1’ Q0’ InA

 Q0n = Q2’ Q1’ Q0’ InA + Q2’ Q1 Q0’ InA’

64

• A sequence detector is sequential logic

• Design Rule: separate combinational logic from sequential
sate elements in lowest-level modules

• We will give you a 1-bit flip-flop module to hold state and a
clock/reset generator

- See the course web site

Combinational

Logic

State

Register

Outputs

Next State

Current

State

Clock
Inputs

Pattern/Sequence detector

Pattern/Sequence detector

 Two ways to implement the “Combinational
logic” block.

 1) Implement the state equations using verilog bitwise

logical operators

 2) Use a case statement to specify the state transitions

