1. <Verilog>
2. <Verilog>
3. The program is compiled into an assembly language program, which is then assembled into a machine language program.
4.
 a. 1280×1024 pixels = $1,310,720$ pixels $\Rightarrow 1,310,720 \times 3 = 3,932,160$ bytes/frame.
 b. $3,932,160$ bytes $\times (8 \text{ bits/byte}) / 100 \times 10^6$ bits/second $= 0.31$ seconds
5. addi $f, h, -5$
 add f, f, g
6. $f = g + h + i$
7. sub $t0, s3, s4$
 add $t0, s6, t0$
 lw $t1, 16(t0)$
 sw $t1, 32(s7)$
8. r-type,
 add $s0, s0, s0$
9. i-type, 0xAD490020
10. r-type
 sub $v1, v1, v0$
 0x00621822
11. i-type
 lw $v0, 4(at)$
 0x8C220004
12. opcode would be 8 bits, rs, rt, rd fields would be 7 bits each
 opcode would be 8 bits, rs and rt fields would be 7 bits each
 more registers \rightarrow more bits per instruction \rightarrow could increase code size
 more registers \rightarrow less register spills \rightarrow less instructions
 more instructions \rightarrow more appropriate instruction \rightarrow decrease code size
 more instructions \rightarrow larger opcodes \rightarrow larger code size
13. 0xBABEFEF8
 0xAAAAAAAA0
 0x00005545

14. I-type

 addi $t2, $t2, -1
 beq $t2, $0, loop

15. 20

 i = 10;
 while(i > 0) {
 B += 2;
 --I;
 }

 5N + 2 instructions