Problem 4:

1. Sign-extend $=00000000000000000000000000010100$

Jump shift-left-2 $=0001100010000000000001010000$
2. $\mathrm{ALUop}=00$

Instruction = 010100
3. $N e w P C=P C+4$

Path = PC to ADD to branch-mux to jump-mux to PC
4. WrReg-mux $=2$ or 0

ALU-mux $=20$
Mem/ALU-mux $=X$
Branch-mux $=\mathrm{PC}+4$
Jump-mux $=P C+4$
5. $A L U=-3$ and 20

Add $(P C+4)=P C$ and 4
Add (branch) $=\mathrm{PC}+4$ and 20*4
6. ReadReg $1=3$

ReadReg 2 = 2
WriteReg $=2$ or 0
WriteData = X
RegWrite $=0$

Problem 5:

1. \quad Pipelined $=350$ ps

Single-Cycle $=1250$ ps
2. \quad Pipelined $=1750 \mathrm{ps}$

Single-Cycle = 1250
3. \quad Stage to split $=I D$

New Cycle Time $=300$ ps
4. 35%
5. 65%
6. Multi-cycle execution time is 4.2 times pipelined execution

Single-cycle execution time is 3.57 times pipelined execution

Problem 6:

1. RAW on R1 from I 1 to I 2 and I 3

RAW on R2 from I 2 to I 3
WAR on R2 from I1 to 12
WAR on R1 from 12 to 13
WAW on R1 from I1 to l3
2. Add 2 NOPs between each instruction for RAW hazards on R1 and R2
3. No hazards
4. No forwarding $=1980$ ps

Forwarding = 1680ps
Speedup $=1.18$
5. No NOPs needed
6. No forwarding $=1980$ ps

ALU-ALU forwarding $=1470$ ps
Speedup $=1.35$

Problem 7:

1. RegWrite $=1$

MemRead =0
ALUMux = 0
MemWrite $=0$
ALUop $=$ AND
RegMux $=0$
Branch $=0$
2. All except data memory, immediate sign-extender, and branch adder
3. Not used = branch adder

No output = data memory

Problem 8:
Easiest = "bit equal" - would only need an optional negation after the xor
Medium = "replace under mask" - would require new function for ALU
Hard = "split register" - This requires writing two registers which would require an additional data path through many of the stages and an additional write port for the register file

Problem 9:

Problem 10:

Legends

1) Boxes with white shading indicates combinational logic
2) Boxes with gray shading indicates clocked elements (All clocked elements are fed by clk and rst which is not indicated in the schematic)
3) Black lines indicate signals in the data path
4) Blue lines indicate signals in the control path

State Machine:

Inputs: (divisor==0, divide_start, remainder<0, count2controller_cnt_done)

Problem 10 Controller Truth Table

	State machine outputs									
Moore state machine's current state		$\begin{aligned} & \frac{i}{0} \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & \frac{0}{3} \\ & \frac{1}{0} \end{aligned}$								
Idle	0	0	0	0	1	0	x	1	0	0
Error	1	1	1	x	x	X	x	X	x	x
Done	1	0	1	x	x	x	x	x	x	x
S-eq	1	0	0	0	0	X	0	1	1	0
SO	1	0	0	1	0	1	x	0	1	1
S1	1	0	0	1	0	0	1	1	1	1

