Basic Arithmetic and the ALU

- Number representations: 2’s complement, unsigned
- Addition/Subtraction
- Add/Sub ALU
 - Full adder, ripple carry, subtraction
- Logical operations
 - and, or, xor, nor, shifts
- Overflow
Basic Arithmetic and the ALU

• Covered later in the semester:
 – Integer multiplication, division
 – Floating point arithmetic

• These are not crucial for the project
Background

• Recall
 – n bits enables 2^n unique combinations

• Notation: $b_{31} \ b_{30} \ldots b_3 \ b_2 \ b_1 \ b_0$

• No inherent meaning
 – $f(b_{31}...b_0) \Rightarrow$ integer value
 – $f(b_{31}...b_0) \Rightarrow$ control signals
Background

• 32-bit types include
 – Unsigned integers
 – Signed integers
 – Single-precision floating point
 – MIPS instructions (refer to book)
Unsigned Integers

• \(f(b_{31} \ldots b_0) = b_{31} \times 2^{31} + \ldots + b_1 \times 2^1 + b_0 \times 2^0 \)

• Treat as normal binary number

 E.g. 0...01101010101

 \[= 1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^1 + 1 \times 2^0 \]

 \[= 128 + 64 + 16 + 4 + 1 = 213 \]

• Max \(f(111\ldots11) = 2^{32} - 1 = 4,294,967,295 \)

• Min \(f(000\ldots00) = 0 \)

• Range \([0,2^{32}-1] \Rightarrow \# \text{ values} (2^{32}-1) - 0 + 1 = 2^{32} \)
Signed Integers

• 2’s complement
 \[f(b_{31} \ldots b_0) = -b_{31} \times 2^{31} + \ldots + b_1 \times 2^1 + b_0 \times 2^0 \]

• Max \(f(0111 \ldots 11) = 2^{31} - 1 = 2147483647 \)

• Min \(f(100 \ldots 00) = -2^{31} = -2147483648 \) (asymmetric)

• Range \([-2^{31}, 2^{31} - 1]\) => # values \(2^{31} - 1 - (-2^{31}) = 2^{32}\)

• Invert bits and add one: e.g. \(-6\)
 \(-000 \ldots 0110 \Rightarrow 111 \ldots 1001 + 1 \Rightarrow 111 \ldots 1010\)
Why 2’s Complement

- Why not use sign-magnitude?
- 2’s complement makes hardware simpler
- Just like humans don’t work with Roman numerals
- Representation affects ease of calculation, not correctness of answer
Addition and Subtraction

• 4-bit unsigned example

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>13</td>
</tr>
</tbody>
</table>

• 4-bit 2’s complement – ignoring overflow

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-3</td>
</tr>
</tbody>
</table>
Subtraction

• $A - B = A + \text{2's complement of } B$
• E.g. $3 - 2$

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td>-2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Full Adder

- Full adder \((a, b, c_{in}) \Rightarrow (c_{out}, s)\)
- \(c_{out} = \text{two or more of } (a, b, c_{in})\)
- \(s = \text{exactly one or three of } (a, b, c_{in})\)

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c_{in}</th>
<th>c_{out}</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Ripple-carry Adder

- Just concatenate the full adders
Ripple-carry Subtractor

- \(A - B = A + (-B) \Rightarrow \text{invert B and set } c_{\text{in}} \text{ to 1} \)
Combined Ripple-carry Adder/Subtractor

- Control = 1 => subtract
- XOR B with control and set c_{in0} to control
Logical Operations

• Bitwise AND, OR, XOR, NOR
 – Implement w/ 32 gates in parallel

• Shifts and rotates
 – rol => rotate left (MSB->LSB)
 – ror => rotate right (LSB->MSB)
 – sll => shift left logical (0->LSB)
 – srl => shift right logical (0->LSB)
 – sra => shift right arithmetic (old MSB->new MSB)
Shifter

- Right shift logic shown: missing inputs are 0
 - Left shift logic similar
- Rotate: wraparound instead of 0 inputs
All Together

\[a \times (b + \text{invert carry}_{in}) \]

Mux

Add

operation

result
Overflow

• With n bits only 2^n combinations
 – Unsigned range [0, 2^{n-1}]
 – 2’s complement range [-2^{n-1}, 2^{n-1}-1]

• Unsigned Add

 5 + 6 > 7: 101 + 110 => 1011
 f(3:0) = a(2:0) + b(2:0) => overflow = f(3)
 Carryout from MSB
Overflow

• More involved for 2’s complement

 -1 + -1 = -2:
 111 + 111 = 1110
 110 = -2 is correct

• Can’t just use carry-out to signal overflow
Addition Overflow

• When is overflow NOT possible?
 (p1, p2) > 0 and (n1, n2) < 0
 p1 + p2
 p1 + n1 not possible
 n1 + p2 not possible
 n1 + n2

• Just checking signs of inputs is not sufficient
Addition Overflow

• 2 + 3 = 5 > 4: 010 + 011 = 101 =? –3 < 0
 – Sum of two positive numbers should not be negative
 • Conclude: overflow
• -1 + -4: 111 + 100 = 011 > 0
 – Sum of two negative numbers should not be positive
 • Conclude: overflow

Overflow = f(2) * ~(a2) * ~(b2) + ~f(2) * a(2) * b(2)
Subtraction Overflow

- No overflow on $a-b$ if signs are the same
- Neg – pos => neg ;; overflow otherwise
- Pos – neg => pos ;; overflow otherwise

Overflow = $f(2) \times \sim(a2) \times (b2) + \sim f(2) \times a(2) \times \sim b(2)$
What to do on Overflow?

• Ignore ! (C language semantics)
 – What about Java? (try/catch?)
• Flag – condition code
• Sticky flag – e.g. for floating point
 – Otherwise gets in the way of fast hardware
• Trap – possibly maskable
 – MIPS has e.g. add that traps, addu that does not
 – Useful for extended precision in software
Zero and Negative

- Zero = \overline{f(2) + f(1) + f(0)}
- Negative = f(2) (sign bit)
Zero and Negative

• May also want correct answer even on overflow
• Negative = (a < b) = (a − b) < 0 even if overflow
• E.g. is −4 < 2?
 100 − 010 = 1010 (-4 − 2 = -6): Overflow!

• Work it out: negative = f(2) XOR overflow
Summary

• Binary representations, signed/unsigned
• Arithmetic
 – Full adder, ripple-carry, adder/subtractor
 – Overflow, negative
• Logical
 – Shift, and, or
• Next: high-performance adders
 – Later: multiply/divide/FP
ECE/CS 552: Carry Lookahead

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark Hill, David Wood, Guri Sohi, John Shen and Jim Smith
Combined Ripple-carry Adder/Subtractor

- The above ALU is too slow
 - Gate delays for add = 32 x FA + XOR ~ = 64
Carry Lookahead

• Theoretically, in parallel
 – Sum$_0$ = f(c$_{in}$, a$_0$, b$_0$)
 – Sum$_i$ = f(c$_{in}$, a$_i$...a$_0$, b$_i$...b$_0$)
 – Sum$_{31}$ = f(c$_{in}$, a$_{31}$...a$_0$, b$_{31}$...b$_0$)

• Any boolean function in two levels, right?
 – Wrong! Too much fan-in!
Carry Lookahead

• Need compromise
 – Build tree so delay is $O(\log_2 n)$ for n bits
 – E.g. 2 x 5 gate delays for 32 bits
• We will consider basic concept with
 – 4 bits
 – 16 bits
• Warning: a little convoluted
Carry Lookahead

0101 0100
0011 0110

Need:
both 1 to generate carry
one or both 1s to propagate carry

Define:
\[g_i = a_i \times b_i \] ## carry generate
\[p_i = a_i + b_i \] ## carry propagate

Recall:
\[c_{i+1} = a_i \times b_i + a_i \times c_i + b_i \times c_i \]
\[= a_i \times b_i + (a_i + b_i) \times c_i \]
\[= g_i + p_i \times c_i \]
Carry Lookahead

- Therefore

\[c_1 = g_0 + p_0 \times c_0 \]
\[c_2 = g_1 + p_1 \times c_1 = g_1 + p_1 \times (g_0 + p_0 \times c_0) \]
\[= g_1 + p_1 \times g_0 + p_1 \times p_0 \times c_0 \]
\[c_3 = g_2 + p_2 \times g_1 + p_2 \times p_1 \times g_0 + p_2 \times p_1 \times p_0 \times c_0 \]
\[c_4 = g_3 + p_3 \times g_2 + p_3 \times p_2 \times g_1 + p_3 \times p_2 \times p_1 \times g_0 + p_3 \times p_2 \times p_1 \times p_0 \times c_0 \]

- Uses one level to form \(p_i \) and \(g_i \), two levels for carry

- But, this needs \(n+1 \) fanin at the OR and the rightmost AND
4-bit Carry Lookahead Adder

Carry Lookahead Block

c_{4} \leftarrow g_{3}p_{3}a_{3}b_{3} \rightarrow c_{3} \rightarrow s_{3}

g_{2}p_{2}a_{2}b_{2} \rightarrow c_{2} \rightarrow s_{2}

g_{1}p_{1}a_{1}b_{1} \rightarrow c_{1} \rightarrow s_{1}

g_{0}p_{0}a_{0}b_{0} \rightarrow c_{0} \rightarrow s_{0}
Hierarchical Carry Lookahead for 16 bits
Hierarchical CLA for 16 bits

Build 16-bit adder from four 4-bit adders

Figure out G and P for 4 bits together

\[G_{0,3} = g_3 + p_3 \cdot g_2 + p_3 \cdot p_2 \cdot g_1 + p_3 \cdot p_2 \cdot p_1 \cdot g_0 \]

\[P_{0,3} = p_3 \cdot p_2 \cdot p_1 \cdot p_0 \] (Notation a little different from the book)

\[G_{4,7} = g_7 + p_7 \cdot g_6 + p_7 \cdot p_6 \cdot g_5 + p_7 \cdot p_6 \cdot p_5 \cdot g_4 \]

\[P_{4,7} = p_7 \cdot p_6 \cdot p_5 \cdot p_4 \]

\[G_{12,15} = g_{15} + p_{15} \cdot g_{14} + p_{15} \cdot p_{14} \cdot g_{13} + p_{15} \cdot p_{14} \cdot p_{13} \cdot g_{12} \]

\[P_{12,15} = p_{15} \cdot p_{14} \cdot p_{13} \cdot p_{12} \]
carry lookahead basics

fill in the holes in the g’s and p’s

\[G_{i,k} = G_{j+1,k} + P_{j+1,k} \times G_{i,j} \]
(assume \(i < j+1 < k \))

\[P_{i,k} = P_{i,j} \times P_{j+1,k} \]

\[G_{0,7} = G_{4,7} + P_{4,7} \times G_{0,3} \]

\[P_{0,7} = P_{0,3} \times P_{4,7} \]

\[G_{8,15} = G_{12,15} + P_{12,15} \times G_{8,11} \]

\[P_{8,15} = P_{8,11} \times P_{12,15} \]

\[G_{0,15} = G_{8,15} + P_{8,15} \times G_{0,7} \]

\[P_{0,15} = P_{0,7} \times P_{8,15} \]
CLA: Compute G’s and P’s

- $G_{12,15}$
- $G_{8,11}$
- $G_{4,7}$
- $G_{0,3}$

- $P_{12,15}$
- $P_{8,11}$
- $P_{4,7}$
- $P_{0,3}$

- $G_{8,15}$
- $G_{0,7}$
- $G_{0,15}$
CLA: Compute Carries

$g_{12} - g_{15}$
$p_{12} - p_{15}$

$g_{8} - g_{11}$
$p_{8} - p_{11}$

$g_{4} - g_{7}$
$p_{4} - p_{7}$

$g_{0} - g_{3}$
$p_{0} - p_{3}$
Other Adders: Carry Select

• Two adds in parallel; with and without c_{in}
 – When C_{in} is done, select correct result
Other Adders: Carry Save

A + B => S
Save carries A + B => S, C\text{out}
Use C_{\text{in}} A + B + C => S_1, S_2 (3# to 2# in parallel)
Used in combinational multipliers by building a Wallace Tree

\[
\begin{array}{c}
7 \\
+ \\
1 \\
\hline
8 \\
C,S \\
\hline
0,8 \\
1,7 \\
\hline
\text{Final} \\
8+1=9 \\
7
\end{array}
\]
Adding Up Many Bits

f e d c b a

CSA

CSA

CSA

CSA

S₂ S₁ S₀
Summary

• Carry lookahead
• Carry-select, Carry-save
• State of the art: parallel prefix adders
 – aka. Brent-Kung, Kogge-Stone, ...
 – Generalization of CLA
 – Physical design (e.g. wiring) of primary concern
 – Covered in ECE 555