THE UNIVERSITY

WISCONSIN

MADISON

ECE/CS 552: Arithmetic and Logic

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Basic Arithmetic and the ALU

Number representations: 2’s complement,
unsigned

Addition/Subtraction
Add/Sub ALU
Full adder, ripple carry, subtraction
Logical operations
and, or, xor, nor, shifts
Overflow

Basic Arithmetic and the ALU

* Covered later in the semester:
— Integer multiplication, division
— Floating point arithmetic

* These are not crucial for the project

Background

* Recall

— n bits enables 2" unique combinations
* Notation: b, by, ... b, b, b, b,
* No inherent meaning

— f(bs;...by) => integer value

— f(bs,...bg) => control signals

Background

e 32-bit types include
— Unsigned integers
— Signed integers
— Single-precision floating point
— MIPS instructions (refer to book)

Unsigned Integers

f(bsy...bg) = bay X231+ .+ by x 21 + by x 2°
Treat as normal binary number
E.g.0...01101010101

=1x27+1x2°+0x2°+1x2%+1x23+0x21+1x20
=128+ 64+16+4+1=213

Max f(111...11) = 232 -1 =4,294,967,295
Min f(000...00) =0
Range [0,232-1] => # values (232-1) -0 + 1 = 232

Signed Integers

2’s complement
f(bsq...bg) = -byy x 231+ .. by x 21 + by x 2°
Max f(0111...11) = 231 =1 =2147483647

Min f(100...00) = -231=-2147483648
(asymmetric)

e Range[-231,231-1] => # values(23-1 - -231) = 232

Invert bits and add one: e.g. —6
—000...0110=>111...1001 +1=>111...1010

Why 2’s Complement

Why not use sign-magnitude?
2’s complement makes hardware simpler

Just like humans don’t work with Roman
numerals

Representation affects ease of calculation, not
correctness of answer

111 9% 403 11 202, 001
110 010 110 010
101 011 101 011

100 100

Addition and Subtraction

e 4-bit unsigned example
0 0] 1| 1 3

11 0 1] O 10
11 1] 0 1 13

* 4-bit 2’s complement —ignoring overflow

O, 0 1, 1 3
11 0 1] O -6
1] 1} 0 1 -3

Subtraction

 A—B=A+2'scomplement of B
* E.g.3-2

10

Full Adder

* Full adder (a,b,c,,) => (¢, S)
* C,=twoormoreof(a,b,c,)

e s=exactlyoneort

nree of (a,b,c,)

a b Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1

11

Ripple-carry Adder

e Just concatenate the full adders

e Fulll |Fulll [Full Full
—Add Add—AdAt— —AddE
er er er er out
ag bo ai by a2by aSlbgl

12

Ripple-carry Subtractor

* A-B=A+(-B)=>invertBandsetc, to1l

Full

Full
_Iadd—Add

er er

ao by aibg

Eull Eull

Add— - —Add— Cout
er er

az b, as ps

13

Combined Ripple-carry

Adder/Subtractor

e Control =1 => subtract

* XOR B with control and set ¢, , to control

Falll [Eulll [Eull Full
{Add Add Addm—— - Add— Cout
er er er er
% % %b @g operation
ag 0 aj 1 as 2 a3y 31

14

Logical Operations

* Bitwise AND, OR, XOR, NOR
— Implement w/ 32 gates in parallel

e Shifts and rotates
— rol => rotate left (MSB->LSB)
— ror => rotate right (LSB->MSB)
— sll -> shift left logical (0->LSB)
— srl -> shift right logical (0->LSB)
— sra -> shift right arithmetic (old MSB->new MSB)

15

Shifter

Shift by 1
Shift by 2
Shift by 4

* Right shift logic shown: missing inputs are 0
— Left shift logic similar

e Rotate: wraparound instead of O inputs
16

All Together

invert

operation

1,

result

[
Mux

Add

Mux

17

Overflow

* With n bits only 2" combinations
— Unsigned range [0, 2"-1]
— 2's complement range [-2"1, 2"1-1]

* Unsigned Add
5+6>7:101+110=>1011
f(3:0) = a(2:0) + b(2:0) => overflow = f(3)
Carryout from MSB

18

Overflow

* More involved for 2’s complement
-1+-1=-2:
111 +111=1110
110 =-2 is correct

* Can’t just use carry-out to signal overflow

19

Addition Overflow

* When is overflow NOT possible?
(p1, p2)>0and (n1,n2)<0
pl + p2
pl + nl not possible
nl + p2 not possible
nl+n2

e Just checking signs of inputs is not sufficient

20

Addition Overflow

e 2+3=5>4:010+011=101=?-3<0
— Sum of two positive numbers should not be
negative
* Conclude: overflow

e -1+-4:111+100=011>0

— Sum of two negative numbers should not be
positive
e Conclude: overflow

Overflow = f(2) * ~(a2)*~(b2) + ~f(2) * a(2) * b(2)

21

Subtraction Overflow

* No overflow on a-b if signs are the same
* Neg— pos => neg ;; overflow otherwise
* Pos—neg=>pos ;; overflow otherwise

Overflow =f(2) * ~(a2)*(b2) + ~f(2) * a(2) * ~b(2)

22

What to do on Overflow?

lgnore ! (C language semantics)
— What about Java? (try/catch?)

Flag — condition code
Sticky flag — e.g. for floating point

— Otherwise gets in the way of fast hardware

Trap — possibly maskable
— MIPS has e.g. add that traps, addu that does not
— Useful for extended precision in software

23

Zero and Negative

e Zero =~[f(2) + f(1) + f(0)]
* Negative = f(2) (sign bit)

24

Zero and Negative

May also want correct answer even on
overflow

Negative = (a < b) = (a—b) <0 even if overflow

E.g. is —4 < 2?
100 - 010 =1010 (-4 — 2 = -6): Overflow!

Work it out: negative = f(2) XOR overflow

25

Summary

* Binary representations, sighed/unsigned
* Arithmetic
— Full adder, ripple-carry, adder/subtractor
— Overflow, negative
* Logical
— Shift, and, or
* Next: high-performance adders
— Later: multiply/divide/FP

26

THE UNIVERSITY

WISCONSIN

MADISON

ECE/CS 552: Carry Lookahead

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Combined Ripple-carry

Adder/Subtractor
Full Full Full Full
{Add Add—Add— —Add— Cout
er er er er
' % % %b %operation
ag 0 a; Pl g, P2 2z 31

e The above ALU is too slow

— Gate delays for add =32 x FA + XOR ~= 64
28

Carry Lookahead

* Theoretically, in parallel
— Sum, =f(c,,, a,, by)
— Sum; = f(c;, a;...ay, b;...by)

— Sumg, = f(c,,, a3;...ap, b3q---bp)

* Any boolean function in two levels, right?
— Wrong! Too much fan-in!

29

Carry Lookahead

* Need compromise
— Build tree so delay is O(log, n) for n bits
— E.g. 2 x 5 gate delays for 32 bits

 We will consider basic concept with
— 4 bits
— 16 bits

 Warning: a little convoluted

30

Carry Lookahead

0101 0100
0011 0110
Need:
both 1 to generate carry
one or both 1s to propagate carry
Define: g =a * b, ## carry generate
p, = a, + b, ## carry propagate
Recall: c,;, =a *b +a *c+b *c
=a; " b+ (aj+hb) "¢
=g +p; ¥ ¢

31

Carry Lookahead

* Therefore
C1=Jo * Po * Cq
C;=01+P1*C =01+ P1* (9o + Po * Co)
=01+ P19+t P1*Po ™ Co
C3=0, P2 01+ P2 P17 Got P2 ™ P1™ Po™ Co
C,= 03+ P3™0, + P3*P2"01 + P3*P2"P1"0o + P3™P2"P1*Po™Co

* Uses one level to form p,and g;, two levels for
carry

e But, this needs n+1 fanin at the OR and the
rightmost AND

32

4-bit Carry Lookahead Adder

Co
Cq <+ Carry Lookahead Block B
?3p3a3b3 gZE’ZaZbZ glpla]_bl gopoaobo
AN YRRy
s c2 c1 Co
l . l l
S3 S2 S1 So

33

Hierarchical Carry Lookahead
for 16 bits

Co
C15=— Carry Lookahead Block B
ES P abiois| G E’ a,bg-11 G P as.7bs7| G P ap-3bp-3
1 trdy | ttjd bt
12 8 4 S0

S12-15 Sg-11 S4-7 S0-3

Hierarchical CLA for 16 bits

Build 16-bit adder from four 4-bit adders
Figure out G and P for 4 bits together

=03+ P3* 0, ¥ P3 *P2" 01+ Ps TP2TPLY Yo
=pP; *P,*P.* Py (Notation a little different from the book)
=07+ P7 06+ P7 "Ps* 05t P7 ¥ Ps™ Ps” Oy
=P7 " P Ps* Py
G115 = 015+ P15 G14 + P15 P1a ™ 913+ P1s " P1a™ P13™ 1o

P15 =P1s *P1a* P1z™ Pro

35

Carry Lookahead Basics

Fill in the holes in the G’s and P’s

G« =Gk + Pk ¥ Gj; (assume i<|+1<Kk)
Pix = Pi;j* Py «

Go7=Gy7+Ps7 "Gy Po7 = Pos™ Pay

Gg 15 = G1215 + P1o1s ™ Gg Pg15 = Pg11™ P12 15
Go,15 = Gg15 + Pg 15 * Gg 7 Po.15 = Po7* Pg, 15

36

CLA: Compute G's and P’s

37

CLA: Compute Carries

s - 911
P8 - P11

da - 97 Jdo - 93
P4 - P7 Po - P3
Cy Co
Go,3
Po3
Co

38

* Two adds in parallel; with and without ¢,
— When C, is done, select correct result

Full Adder 0 .
Full Adder 0
Full Adder|] |1
TEO .
next
select
2-1 Mux

select
B)

Other Adders: Carry Save

A+B=>S C,S 08 1,7
Save carriesA+B=>S§, C_, Final 8+1=9 7
Use C, A+ B+ C=>S51, S2 (3# to 2# in parallel)

Used in combinational multipliers by building a
Wallace Tree

40

Adding Up Many Bits

f e d C b a

41

Summary

* Carry lookahead
e Carry-select, Carry-save

e State of the art: parallel prefix adders
— aka. Brent-Kung, Kogge-Stone, ...
— Generalization of CLA
— Physical design (e.g. wiring) of primary concern
— Covered in ECE 555

42

