
ECE/CS 552: Single Cycle Datapath

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Processor Implementation

• Forecast – heart of 552 – key to project

– Sequential logic design review (brief)

– Clock methodology (FSD)

– Datapath – 1 CPI
• Single instruction, 2’s complement, unsigned

• Next:

– Control

– Multiple cycle implementation (information only)

– Microprogramming

– Exceptions

Review Sequential Logic

• Logic is combinational if output is solely
function of inputs

– E.g. ALU of previous lecture

• Logic is sequential or “has state” if output
function of:

– Past and current inputs

– Past inputs remembered in “state”

– Of course, no magic

Review Sequential Logic

• Clock high, Q = D, ~Q = ~D after prop. Delay
• Clock low Q, ~Q remain unchanged

– Level-sensitive latch

Review Sequential Logic

• Master/Slave D flip-flop

– While clock high, QM follows D, but QS holds

– At falling edge QM propagates to QS

– Opaque except at falling (rising) clock edge

Review Sequential Logic

• Why can this fail for a latch?

– Latch is transparent when clock is high (low)

– Creates combinational loop

– Increment evaluates unknown number of
times

D FF +1

Clocking Methology

• Motivation

– Design data and control without considering clock

• Use Fully Synchronous Design (FSD)

– Just a convention to simplify design process

– Restricts design freedom

– Eliminates complexity, can guarantee timing
correctness

– Not really feasible in real designs: off-chip I/O

– Even in ECE 554 you will violate FSD

Our Methodology
• Only flip-flops
• All on the same edge (e.g. falling)
• All with same clock

– No need to draw clock signals

• All logic finishes in one cycle

FFs Logic FFsLogic

Our Methodology, cont’d

• No clock gating!

– Book has bad
examples

• Correct design:

state

write AND clock

new current

state
current

new

write

0

1

Delayed Clocks (Gating)

• Problem:

– Some flip-flops receive gated clock late

– Data signal may violate setup & hold req’t

Clock

Gated clock

X

D D
Delay

Delay

Clock

X Y

Y

FSD Clocking Rules

• Tclock = cycle time
• Tsetup = FF setup time requirement
• Thold = FF hold time requirement
• TFF = FF combinational delay
• Tcomb = Combinational delay
• FSD Rules:

– Tclock > TFF + Tcombmax + Tsetup

– TFF + Tcombmin > Thold

Clock
D D

Delay

Clock

Y

Y

Datapath – 1 CPI

• Assumption: get whole instruction done in
one long cycle

• Instructions:

– and, lw, sw, & beq

• To do

– For each instruction type

– Putting it all together

Fetch Instructions

• Fetch instruction, then
increment PC

– Same for all types

• Assumes

– PC updated every cycle

– No branches or jumps

• After this instruction
fetch next one

ALU Instructions

• and $1, $2, $3 # $1 <= $2 & $3

• E.g. MIPS R-format
Opcode rs rt rd shamt function

6 5 5 5 5 6

Load/Store Instructions

• lw $1, immed($2) # $1 <= M[SE(immed)+$2]
• E.g. MIPS I-format:

Opcode rt rt immed

6 5 5 16

Branch Instructions

• beq $1, $2, addr # if ($1==$2) PC = PC + addr<<2

• Actually

newPC = PC + 4

target = newPC + addr << 2 # in MIPS offset from newPC

if (($1 - $2) == 0)
PC = target

else
PC = newPC

Branch Instructions

All Together

Register File?

Summary

• Sequential logic design review (brief)

• Clock methodology (FSD)

• Datapath – 1 CPI

– ALU, lw, sw, beq instructions

