THE UNIVERSITY

WISCONSIN

MADISON

ECE/CS 552: Single Cycle Datapath

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Processor Implementation

* Forecast — heart of 552 — key to project
— Sequential logic design review (brief)
— Clock methodology (FSD)
— Datapath —1 CPI

* Single instruction, 2’s complement, unsigned

* Next:

— Control
— Multiple cycle implementation (information only)
— Microprogramming

— Exceptions

Review Sequential Logic

* Logic is combinational if output is solely
function of inputs
— E.g. ALU of previous lecture

* Logic is sequential or “has state” if output
function of:
— Past and current inputs
— Past inputs remembered in “state”

— Of course, no magic

Review Sequential Logic

C

D

* Clock high, Q =D, ~Q = ~D after prop. Delay
e Clock low Q, ~Q remain unchanged
— Level-sensitive latch

Review Sequential Logic

O
\/ [o
Q
@
S
Ol

* Master/Slave D flip-flop
— While clock high, Q,, follows D, but Qg holds
— At falling edge Q,, propagates to Qg
— Opaque except at falling (rising) clock edge

Review Sequential Logic

* Why can this fail for a latch?
— Latch is transparent when clock is high (low)
— Creates combinational loop

— Increment evaluates unknown number of
times

Clocking Methology

* Motivation
— Design data and control without considering clock
e Use Fully Synchronous Design (FSD)
— Just a convention to simplify design process
— Restricts design freedom

— Eliminates complexity, can guarantee timing
correctness

— Not really feasible in real designs: off-chip 1/0
— Even in ECE 554 you will violate FSD

Our Methodology

Only flip-flops
All on the same edge (e.g. falling)
All with same clock
— No need to draw clock signals
All logic finishes in one cycle

@ FFs

@ FFs

Our Methodology, cont’d

state

* No clock gating!

— Book has bad
examples

* Correct design:

Delayed Clocks (Gating)

]
Clock \

Gated clock |

Y 77

* Problem:
— Some flip-flops receive gated clock late
— Data signal may violate setup & hold req’t

FSD Clocking Rules

o UL gy

Y |
. Clock
* I ok = CYyCle time
* Terup = FF setup time requirement

* T,.q= FF hold time requirement
* T. = FF combinational delay

* T, = Combinational delay
 FSD Rules:
_ Tclock > TFF + Tcombmax t Tsetup

— T+ T

combmin > Thold

Datapath — 1 CPI

* Assumption: get whole instruction done in
one long cycle

* Instructions:
—and, lw, sw, & beqg

* Todo

— For each instruction type
— Putting it all together

Fetch Instructions

Fetch instruction, then
Increment PC

— Same for all types

Assumes
— PC updated every cycle
— No branches or jumps

After this instruction
fetch next one

PC

4“

Read
address

Instruction
memory

Instruction

ALU Instructions

e and S1,S52,S3#S1<=52&S3

—| Read
register 1 Read
data 1
Read
Instructi register 2
nstruction | g Registers
| Write
register Read
| write data 2
data
e E.g. MIP
Opcode rs rt rd shamt function

6 5 5 5 5 6

Load/Store Instructions

e |lwS1, immed(S2) # S1 <= M[SE(immed)+52]
e E.g. MIPS I-format:

Opcode rt rt immed

6 5 5 16

3 ALU operation
Read
register 1 Read MemWfrite
Read data 1 "
Instruction register 2 ALL Zerop—>»
. Registers > ALU
Write result »| Address Read
register Read data
. data 2 v /
_| Write
| data Data

i memory
| Wirite

| data

RegWite

16] 32 I
v | Sign MemRead

N | extend

Branch Instructions

* beq S1, S2, addr #if ($1==$2) PC = PC + addr<<2

* Actually
newPC=PC+4
target = newPC + addr << 2 # in MIPS offset from newPC
if (($1-52)==0)
PC = target
else
PC = newPC

Branch Instructions

PC + 4 from instruction datapath s

Instruction ‘

N

> Add Sum

\

v

>ALU Zero

Read
register 1 Read
Read data 1
register 2
Registers

Write
register Read
Write data 2
data

16 _ 32

v | Sign

A lextend

» Branch target

To branch
control logic

All Together

v

N\

PCSr

F

>Add

=

PC

Read
address

Instruction

Instruction
memory

A

ALUSrc
|

Registers
Read
register 1 Read
Read data 1
register 2
Write Read
register data?2
Write
data
RegWritd]

1\6 Sign

Ml extend

xXC=

>Add AL
result

3] ALU operation

| Write

“C=

Read
data

Data
memory

Address

32

"l data

MemWrite

MemtoReg

—(-

xc=

MemRead

Register File?

DFF Bit Slice

||
CE D

DFF

C Ad C
_—Ik— Adx
4 Decoder
A_Ad A
- i&— Adx
4 Decoder
B Adx B
——1 Adx
4 Decoder
C = Write Port

45 =ERead Palts

Dﬂlﬂ_ci.:i] V
-~
-
-
-
-~
o ~
15 - 0
DFF DFF - DFF
Data_A(l) Data_B{i)

15

Summary

e Sequential logic design review (brief)
* Clock methodology (FSD)
 Datapath —1 CPI

— ALU, lw, sw, beq instructions

