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Processor Implementation

* Forecast — heart of 552 — key to project
— Sequential logic design review (brief)
— Clock methodology (FSD)
— Datapath —1 CPI

* Single instruction, 2’s complement, unsigned

* Next:

— Control
— Multiple cycle implementation (information only)
— Microprogramming

— Exceptions



Review Sequential Logic

* Logic is combinational if output is solely
function of inputs
— E.g. ALU of previous lecture

* Logic is sequential or “has state” if output
function of:
— Past and current inputs
— Past inputs remembered in “state”

— Of course, no magic



Review Sequential Logic
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* Clock high, Q =D, ~Q = ~D after prop. Delay
e Clock low Q, ~Q remain unchanged
— Level-sensitive latch



Review Sequential Logic
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* Master/Slave D flip-flop
— While clock high, Q,, follows D, but Qg holds
— At falling edge Q,, propagates to Qg
— Opaque except at falling (rising) clock edge



Review Sequential Logic

* Why can this fail for a latch?
— Latch is transparent when clock is high (low)
— Creates combinational loop

— Increment evaluates unknown number of
times



Clocking Methology

* Motivation
— Design data and control without considering clock
e Use Fully Synchronous Design (FSD)
— Just a convention to simplify design process
— Restricts design freedom

— Eliminates complexity, can guarantee timing
correctness

— Not really feasible in real designs: off-chip 1/0
— Even in ECE 554 you will violate FSD



Our Methodology

Only flip-flops
All on the same edge (e.g. falling)
All with same clock
— No need to draw clock signals
All logic finishes in one cycle

@ FFs

@ FFs



Our Methodology, cont’d

_state_

* No clock gating!

— Book has bad
examples

* Correct design:




Delayed Clocks (Gating)
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* Problem:
— Some flip-flops receive gated clock late
— Data signal may violate setup & hold req’t



FSD Clocking Rules
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* I ok = CYyCle time
* Terup = FF setup time requirement

* T,.q= FF hold time requirement
* T. = FF combinational delay

* T, = Combinational delay
 FSD Rules:
_ Tclock > TFF + Tcombmax t Tsetup

— T+ T

combmin > Thold



Datapath — 1 CPI

* Assumption: get whole instruction done in
one long cycle

* Instructions:
—and, lw, sw, & beqg

* Todo

— For each instruction type
— Putting it all together



Fetch Instructions

Fetch instruction, then
Increment PC

— Same for all types

Assumes
— PC updated every cycle
— No branches or jumps

After this instruction
fetch next one

PC

4“

Read
address

Instruction
memory

Instruction




ALU Instructions

e and S1,S52,S3#S1<=52&S3

—| Read
register 1 Read
data 1
Read
Instructi register 2
nstruction | g Registers
| Write
register Read
| write data 2
data
e E.g. MIP
Opcode rs rt rd shamt function

6 5 5 5 5 6



Load/Store Instructions

e |lwS1, immed(S2) # S1 <= M[SE(immed)+52]
e E.g. MIPS I-format:

Opcode rt rt immed

6 5 5 16

3 ALU operation
Read
register 1 Read MemWfrite
Read data 1 "
Instruction register 2 ALL Zerop—>»
. Registers > ALU
Write result »| Address Read
register Read data
. data 2 v /
_| Write
| data Data

i memory
| Wirite

| data

RegWite

16 ] 32 I
v | Sign MemRead

N | extend




Branch Instructions

* beq S1, S2, addr #if ($1==$2) PC = PC + addr<<2

* Actually
newPC=PC+4
target = newPC + addr << 2 # in MIPS offset from newPC
if (($1-52)==0)
PC = target
else
PC = newPC



Branch Instructions

PC + 4 from instruction datapath s

Instruction ‘
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>ALU Zero

Read
register 1 Read
Read data 1
register 2
Registers

Write
register Read
Write data 2
data

16 _ 32

v | Sign

A lextend

» Branch target

To branch
control logic



All Together
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Register File?

DFF Bit Slice
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Summary

e Sequential logic design review (brief)
* Clock methodology (FSD)
 Datapath —1 CPI

— ALU, lw, sw, beq instructions



