
ECE/CS 552: Pipelining

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Pipelining

• Forecast
– Big Picture

– Datapath

– Control

Motivation

• Single cycle implementation

– CPI = 1

– Cycle = imem + RFrd + ALU + dmem + RFwr +
muxes + control

– E.g. 500+250+500+500+250+0+0 = 2000ps

– Time/program = P x 2ns

Instructions Cycles

 Program Instruction

Time

Cycle

 (code size)

X X

 (CPI) (cycle time)

Multicycle

• Multicycle implementation:

Cycle:

Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

i F D X M W

i+1 F D X

i+2 F D X M

i+3 F

i+4

Multicycle

• Multicycle implementation

– CPI = 3, 4, 5

– Cycle = max(memory, RF, ALU, mux, control)

– = max(500,250,500) = 500ps

– Time/prog = P x 4 x 500 = P x 2000ps = P x 2ns

• Would like:

– CPI = 1 + overhead from hazards (later)

– Cycle = 500ps + overhead

– In practice, ~3x improvement

Big Picture

• Instruction latency = 5 cycles

• Instruction throughput = 1/5 instr/cycle

• CPI = 5 cycles per instruction

• Instead

– Pipelining: process instructions like a lunch buffet

– ALL microprocessors use it

• E.g. Intel Core i7, AMD Jaguar, ARM A9

Big Picture

• Instruction Latency = 5 cycles (same)

• Instruction throughput = 1 instr/cycle

• CPI = 1 cycle per instruction

• CPI = cycle between instruction completion = 1

Ideal Pipelining

• Bandwidth increases linearly with pipeline depth

• Latency increases by latch delays

Gate
Delay

Comb. Logic
n Gate Delay

Gate
Delay

L Gate
DelayL

L Gate
DelayL Gate

DelayL

L BW = ~(1/n)

n
--
2

n
--
2

n
--
3

n
--
3

n
--
3

BW = ~(2/n)

BW = ~(3/n)

Example: Integer Multiplier

9

16x16 combinational multiplier

ISCAS-85 C6288 standard benchmark

Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC

[Source: J. Hayes, Univ. of Michigan]

Example: Integer Multiplier

Configuration Delay MPS Area (FF/wiring) Area Increase

Combinational 3.52ns 284 7535 (--/1759)

2 Stages 1.87ns 534 (1.9x) 8725 (1078/1870) 16%

4 Stages 1.17ns 855 (3.0x) 11276 (3388/2112) 50%

8 Stages 0.80ns 1250 (4.4x) 17127 (8938/2612) 127%

10

Pipeline efficiency

2-stage: nearly double throughput; marginal area cost

4-stage: 75% efficiency; area still reasonable

8-stage: 55% efficiency; area more than doubles

Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC

Ideal Pipelining

Cycle:

Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

i F D X M W

i+1 F D X M W

i+2 F D X M W

i+3 F D X M W

i+4 F D X M W

Pipelining Idealisms

• Uniform subcomputations

– Can pipeline into stages with equal delay

• Identical computations

– Can fill pipeline with identical work

• Independent computations

– No relationships between work units

– No dependences, hence no pipeline hazards

• Are these practical?

– No, but can get close enough to get significant speedup

Complications

• Datapath

– Five (or more) instructions in flight

• Control

– Must correspond to multiple instructions

• Instructions may have

– data and control flow dependences

– I.e. units of work are not independent

• One may have to stall and wait for another

Datapath

Datapath

Control

• Control

– Concurrently set by 5 different instructions

– Divide and conquer: carry IR down the pipe

Pipelined Datapath

• Start with single-cycle datapath
• Pipelined execution

– Assume each instruction has its own datapath

– But each instruction uses a different part in every cycle

– Multiplex all on to one datapath

– Latches separate cycles (like multicycle)

• Ignore dependences and hazards for now

– Data

– control

Pipelined Datapath

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Data

memory

Address

Pipelined Datapath

• Instruction flow

– add and load

– Write of registers

– Pass register specifiers

• Any info needed by a later stage gets passed
down the pipeline

– E.g. store value through EX

Pipelined Control

• IF and ID
– None

• EX
– ALUop, ALUsrc, RegDst

• MEM
– Branch, MemRead, MemWrite

• WB
– MemtoReg, RegWrite

Datapath Control Signals

PC

Instruction
memory

Address

In
s
tr

u
c
ti
o
n

Instruction
[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32

Instruction
[15– 0]

0

0
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1
Write

data

Read

data M
u
x

1

ALU

control

RegWrite

MemRead

Instruction
[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data
memory

PCSrc

Zero

Add
Add

result

Shift

left 2

ALU

result

ALU

Zero

Add

0

1

M
u
x

0

1

M
u
x

Pipelined Control

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

All Together

PC

Instruction
memory

In
s
tr

u
c
ti
o

n

Add

Instruction
[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15–0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e

m
W

ri
te

Address

Data
memory

Address

Pipelined Control

• Controlled by different instructions

• Decode instructions and pass the signals down
the pipe

• Control sequencing is embedded in the
pipeline

– No explicit FSM

– Instead, distributed FSM

Summary

• Big Picture
• Datapath
• Control
• Next

– Program dependences
– Pipeline hazards

