THE UNIVERSITY

WISCONSIN

MADISON

ECE/CS 552: Pipelining

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Pipelining

* Forecast
— Big Picture
— Datapath
— Control

Motivation

(code size) (CPI) (cycle time)

* Single cycle implementation
—CPI=1

— Cycle =imem + RFrd + ALU + dmem + RFwr +
muxes + control

— E.g. 500+250+500+500+250+0+0 = 2000ps
— Time/program =P x 2ns

Multicycle

* Multicycle implementation:

Cycle: |1 (23 |4|5|6 |7 |8 1111111
Instr: 01123
i FI DX MW

1+1 F|D| X

1+2 D XM
1+3 F

1+4

Multicycle

* Multicycle implementation
— CPI=3,4,5
— Cycle = max(memory, RF, ALU, mux, control)
— = max(500,250,500) = 500ps
— Time/prog =P x4 x 500 = P x 2000ps = P x 2ns

* Would like:
— CPI =1 + overhead from hazards (later)
— Cycle =500ps + overhead
— In practice, ~¥3x improvement

Big Picture

Instruction latency =5 cycles
Instruction throughput = 1/5 instr/cycle
CPI =5 cycles per instruction

Instead

— Pipelining: process instructions like a lunch buffet

— ALL microprocessors use it
* E.g. Intel Core i7, AMD Jaguar, ARM A9

Big Picture

Instruction Latency = 5 cycles (same)
Instruction throughput = 1 instr/cycle

CPl =1 cycle per instruction

CPI = cycle between instruction completion =1

ldeal Pipelining

Caomb. Logi _
sem by |ewe-om

N Gate Gate
' 7 Delay 5 Delay I—' BW = ~(2/n)

n Gatel
3 Delay BW = ~(3/n)

 Bandwidth increases linearly with pipeline depth

:

e Latency increases by latch delays

Example: Integer Multiplier

B o

AV

N
i)
; L
e B HE

S
m#ﬂmm Wﬁlﬁ o

Half Adder
O Full Adder

NAVAANY MRVAVANS Ml ail
B e DR NTARCANTAL AN ey
RENTIATANI AT Sl

al multiplier

e

7
/

16x16 combinat

ISCAS-85 C6288 standard benchmark
Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC

Example: Integer Multiplier

Combinational 3.52ns 7535 (--/1759)

2 Stages 1.87ns 534 (1.9x) 8725 (1078/1870) 16%
4 Stages 1.17ns 855 (3.0x) 11276 (3388/2112) 50%
8 Stages 0.80ns 1250 (4.4x) 17127 (8938/2612) 127%

Pipeline efficiency
2-stage: nearly double throughput; marginal area cost
4-stage: 75% efficiency; area still reasonable
8-stage: 55% efficiency; area more than doubles
Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC

10

ldeal Pipelining

Cycle: |1 |12 134|567 (8|9 |1 111
Instr:

| FIDIX MW

i+1 FIDIX| MW

i+2 FIDIX MW

i+3 FIDIX MW

i+4 FIDIX MW

Pipelining Idealisms

Uniform subcomputations
— Can pipeline into stages with equal delay

ldentical computations
— Can fill pipeline with identical work

Independent computations
— No relationships between work units
— No dependences, hence no pipeline hazards

Are these practical?
— No, but can get close enough to get significant speedup

Complications

e Datapath

— Five (or more) instructions in flight

e Control

— Must correspond to multiple instructions

* |nstructions may have
— data and control flow dependences

— |.e. units of work are not independent
* One may have to stall and wait for another

Datapath

WEB: Write back

0
o
O
Q T o
Q 55
© xS
>
5 -
85
£ L o2
@ 4
= 5 £z
. 2 28
=
T,
=
o o=
S

Registers Read
data 2
Sign
\ '@ \

register 1
register 2
register

Read
Read
Write
\Write
data

>

Instruction

< m/
=l 2

Instruction
memory

. Instruction fetch

IF
—H Address

Datapath

2
- (8)]
o gl =
o O P
o | S —— |
Q
s ______ 1 @ __
[&] —ll—
=
(1
e o |=
= O
=) o =)
—_ & “ &«
0 o o S
mO =) o)
o N (4p]
c B - , ,
ES 2 & & 3
5 k7
209
[G S
O U ©= >

Control

e Control
— Concurrently set by 5 different instructions
— Divide and conquer: carry IR down the pipe

Pipelined Datapath

e Start with single-cycle datapath
* Pipelined execution
— Assume each instruction has its own datapath
— But each instruction uses a different part in every cycle
— Multiplex all on to one datapath
— Latches separate cycles (like multicycle)

* Ignore dependences and hazards for now
— Data
— control

0
MO
ul}
X
1

Pipelined Datapath

»(PC

Read(l]

MEM/WB

data

IF/ID ID/EX EX/MEM
>Add \
> AddlJ
! / >Add result
Shift
left 2
S ReadO
Address § register 1 Readl \
z ReadD e Zero —
Instruction = register 2 >
memory | __Registers Read(] s AU aLub
WriteU data 2 result Address
register M
Write[J u / Datall
rite X D
data 1 ry
Write
data
1 . 32
\ Sign| \

\

extend [

OxczZzhr

Pipelined Datapath

* |nstruction flow
— add and load
— Write of registers
— Pass register specifiers
* Any info needed by a later stage gets passed
down the pipeline
— E.g. store value through EX

Pipelined Control

IF and ID

— None

EX

— ALUop, ALUsrc, RegDst

MEM

— Branch, MemRead, MemWrite
WB

— MemtoReg, RegWrite

Datapath Control Signals

MO
udd

MASTA

| IF/ID ID/EX
Add
4 —
Shift]
left 2
s ReadO
| Address g register 1 Read
> data 1
3 ReadD)
. < register
'”;tgrjﬁgonm — _ Registers Read ALU ALU
ry WriteO data 2 result
register
Writed
[data b

InstructionO
[15-0] 16
\

Instructiond
[20-16]

EX/MEM

r

Instruction
[15-11]

Address

Datal]
memory

WriteO
data

Read
data

MEM/WB

P xcz©
oo

Instruction

_>C

IF/1D

Pipelined Control

ontrol

WB

EX

ID/EX

WB

EXIMEM

WB

MEM/WB

All Together

—(PC

IF/ID

IDIEX

Add

Address

Instructiond
memory

Readl

register 1 Read
Readl data 1

r

l Instruction

register 2
Registers Readll
Write data 2 >

register

Write
data

Instruction
[15-0] “16

Instructiond)
[20-16]

EX/MEM

ALU ALU

result

P xezZ©

A ©

Instruction
[15-11]

Address

WriteO
data

Datall
memory

Read
data

MEM/WB
]—> b 1
M
ul]
X
0

Pxcz©o

Pipelined Control

* Controlled by different instructions

* Decode instructions and pass the signals down
the pipe

e Control sequencing is embedded in the
pipeline
— No explicit FSM
— Instead, distributed FSM

Summary

Big Picture
Datapath
Control

Next

— Program dependences
— Pipeline hazards

