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Pipelining

* Forecast
— Big Picture
— Datapath
— Control



Motivation

(code size) (CPI) (cycle time)

* Single cycle implementation
—CPI=1

— Cycle =imem + RFrd + ALU + dmem + RFwr +
muxes + control

— E.g. 500+250+500+500+250+0+0 = 2000ps
— Time/program =P x 2ns



Multicycle

* Multicycle implementation:

Cycle: |1 (23 |4|5|6 |7 |8 1111111
Instr: 01123
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Multicycle

* Multicycle implementation
— CPI=3,4,5
— Cycle = max(memory, RF, ALU, mux, control)
— = max(500,250,500) = 500ps
— Time/prog =P x4 x 500 = P x 2000ps = P x 2ns

* Would like:
— CPI =1 + overhead from hazards (later)
— Cycle =500ps + overhead
— In practice, ~¥3x improvement



Big Picture

Instruction latency =5 cycles
Instruction throughput = 1/5 instr/cycle
CPI =5 cycles per instruction

Instead

— Pipelining: process instructions like a lunch buffet

— ALL microprocessors use it
* E.g. Intel Core i7, AMD Jaguar, ARM A9



Big Picture

Instruction Latency = 5 cycles (same)
Instruction throughput = 1 instr/cycle

CPl =1 cycle per instruction

CPI = cycle between instruction completion =1



ldeal Pipelining
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 Bandwidth increases linearly with pipeline depth

:

e Latency increases by latch delays



Example: Integer Multiplier
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Example: Integer Multiplier

Combinational 3.52ns 7535 (--/1759)

2 Stages 1.87ns 534 (1.9x) 8725 (1078/1870) 16%
4 Stages 1.17ns 855 (3.0x) 11276 (3388/2112) 50%
8 Stages 0.80ns 1250 (4.4x) 17127 (8938/2612) 127%

Pipeline efficiency
2-stage: nearly double throughput; marginal area cost
4-stage: 75% efficiency; area still reasonable
8-stage: 55% efficiency; area more than doubles
Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC
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ldeal Pipelining

Cycle: |1 |12 134|567 (8|9 |1 111
Instr:

| FIDIX MW
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Pipelining Idealisms

Uniform subcomputations
— Can pipeline into stages with equal delay

ldentical computations
— Can fill pipeline with identical work

Independent computations
— No relationships between work units
— No dependences, hence no pipeline hazards

Are these practical?
— No, but can get close enough to get significant speedup



Complications

e Datapath

— Five (or more) instructions in flight

e Control

— Must correspond to multiple instructions

* |nstructions may have
— data and control flow dependences

— |.e. units of work are not independent
* One may have to stall and wait for another



Datapath

WEB: Write back
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Datapath
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Control

e Control
— Concurrently set by 5 different instructions
— Divide and conquer: carry IR down the pipe



Pipelined Datapath

e Start with single-cycle datapath
* Pipelined execution
— Assume each instruction has its own datapath
— But each instruction uses a different part in every cycle
— Multiplex all on to one datapath
— Latches separate cycles (like multicycle)

* Ignore dependences and hazards for now
— Data
— control
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Pipelined Datapath
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Pipelined Datapath

* |nstruction flow
— add and load
— Write of registers
— Pass register specifiers
* Any info needed by a later stage gets passed
down the pipeline
— E.g. store value through EX



Pipelined Control

IF and ID

— None

EX

— ALUop, ALUsrc, RegDst

MEM

— Branch, MemRead, MemWrite
WB

— MemtoReg, RegWrite



Datapath Control Signals
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All Together

—(PC

IF/ID

IDIEX

Add

Address

Instructiond
memory

Readl

register 1 Read
Readl data 1

r

l Instruction

register 2
Registers Readll
Write data 2 >

register

Write
data

Instruction
[15-0] “16

Instructiond)
[20-16]

EX/MEM

ALU ALU

result

P xezZ©

A ©

Instruction
[15-11]

Address

WriteO
data

Datall
memory

Read
data

MEM/WB
]—> b 1
M
ul]
X
0

Pxcz©o




Pipelined Control

* Controlled by different instructions

* Decode instructions and pass the signals down
the pipe

e Control sequencing is embedded in the
pipeline
— No explicit FSM
— Instead, distributed FSM



Summary

Big Picture
Datapath
Control

Next

— Program dependences
— Pipeline hazards



