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Pipelining 

• Forecast 
– Big Picture 

– Datapath 

– Control 



Motivation 

• Single cycle implementation 

– CPI = 1 

– Cycle = imem + RFrd + ALU + dmem + RFwr + 
muxes + control 

– E.g. 500+250+500+500+250+0+0 = 2000ps 

– Time/program = P x 2ns 
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Multicycle 

• Multicycle implementation: 
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Multicycle 

• Multicycle implementation 

– CPI = 3, 4, 5 

– Cycle  = max(memory, RF, ALU, mux, control) 

–    = max(500,250,500) = 500ps 

– Time/prog = P x 4 x 500 = P x 2000ps = P x 2ns 

• Would like: 

– CPI = 1 + overhead from hazards (later) 

– Cycle = 500ps + overhead 

– In practice, ~3x improvement 



Big Picture 

• Instruction latency = 5 cycles 

• Instruction throughput = 1/5 instr/cycle 

• CPI = 5 cycles per instruction 

• Instead 

– Pipelining: process instructions like a lunch buffet 

– ALL microprocessors use it 

• E.g. Intel Core i7, AMD Jaguar, ARM A9 



Big Picture 

• Instruction Latency = 5 cycles (same) 

• Instruction throughput = 1 instr/cycle 

• CPI = 1 cycle per instruction 

• CPI = cycle between instruction completion = 1 



Ideal Pipelining 

• Bandwidth increases linearly with pipeline depth 

• Latency increases by latch delays 
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Example: Integer Multiplier 

9 

16x16 combinational multiplier  

ISCAS-85 C6288 standard benchmark 

Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC 

 

[Source: J. Hayes, Univ. of Michigan] 



Example: Integer Multiplier 

Configuration Delay MPS Area (FF/wiring) Area Increase 

Combinational 3.52ns 284 7535 (--/1759) 

2 Stages 1.87ns 534 (1.9x) 8725 (1078/1870) 16% 

4 Stages 1.17ns 855 (3.0x) 11276 (3388/2112) 50% 

8 Stages 0.80ns 1250 (4.4x) 17127 (8938/2612) 127% 

10 

Pipeline efficiency 

2-stage: nearly double throughput; marginal area cost 

4-stage: 75% efficiency; area still reasonable 

8-stage: 55% efficiency; area more than doubles 

Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC 

 



Ideal Pipelining 

Cycle: 

Instr: 

1 2 3 4 5 6 7 8 9 1
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1
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i F D X M W 

i+1 F D X M W 

i+2 F D X M W 

i+3 F D X M W 

i+4 F D X M W 



Pipelining Idealisms 

• Uniform subcomputations 

– Can pipeline into stages with equal delay 

• Identical computations 

– Can fill pipeline with identical work 

• Independent computations 

– No relationships between work units 

– No dependences, hence no pipeline hazards 

• Are these practical? 

– No, but can get close enough to get significant speedup 



Complications 

• Datapath 

– Five (or more) instructions in flight 

• Control 

– Must correspond to multiple instructions 

• Instructions may have  

– data and control flow dependences 

– I.e. units of work are not independent 

• One may have to stall and wait for another 



Datapath 



Datapath 



Control 

• Control 

– Concurrently set by 5 different instructions 

– Divide and conquer: carry IR down the pipe 



Pipelined Datapath 

• Start with single-cycle datapath 
• Pipelined execution 

– Assume each instruction has its own datapath 

– But each instruction uses a different part in every cycle 

– Multiplex all on to one datapath 

– Latches separate cycles (like multicycle) 

 
• Ignore dependences and hazards for now 

– Data 

– control 



Pipelined Datapath 
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Pipelined Datapath 

• Instruction flow 

– add and load 

– Write of registers 

– Pass register specifiers 

• Any info needed by a later stage gets passed 
down the pipeline 

– E.g. store value through EX 



Pipelined Control 

• IF and ID 
– None 

• EX 
– ALUop, ALUsrc, RegDst 

• MEM 
– Branch, MemRead, MemWrite 

• WB 
– MemtoReg, RegWrite 



Datapath Control Signals 
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Pipelined Control 
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All Together 
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Pipelined Control 

• Controlled by different instructions 

• Decode instructions and pass the signals down 
the pipe 

• Control sequencing is embedded in the 
pipeline 

– No explicit FSM 

– Instead, distributed FSM 



Summary 

• Big Picture 
• Datapath 
• Control 
• Next 

– Program dependences  
– Pipeline hazards 


