
ECE/CS 552: Pipelining to
Superscalar

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Pipelining to Superscalar

• Forecast

– Real pipelines

– IBM RISC Experience

– The case for superscalar

– Instruction-level parallel machines

– Superscalar pipeline organization

– Superscalar pipeline design

MIPS R2000/R3000 Pipeline

Stage Phase Function performed

IF φ1
Translate virtual instr. addr. using TLB

φ2
Access I-cache

RD φ1
Return instruction from I-cache, check tags & parity

φ2
Read RF; if branch, generate target

ALU φ1
Start ALU op; if branch, check condition

φ2
Finish ALU op; if ld/st, translate addr

MEM φ1
Access D-cache

φ2
Return data from D-cache, check tags & parity

WB φ1
Write RF

φ2

Separate

Adder

Intel i486 5-stage Pipeline

Stage Function Performed

IF Fetch instruction from 32B prefetch buffer

 (separate fetch unit fills and flushes prefetch buffer)

ID-1 Translate instr. Into control signals or microcode address

Initiate address generation and memory access

ID-2 Access microcode memory

Send microinstruction(s) to execute unit

EX Execute ALU and memory operations

WB Write back to RF

Prefetch Queue

Holds 2 x 16B

??? instructions

IBM RISC Experience [Agerwala and Cocke 1987]

• Internal IBM study: Limits of a scalar pipeline?
• Memory Bandwidth

– Fetch 1 instr/cycle from I-cache

– 40% of instructions are load/store (D-cache)

• Code characteristics (dynamic)
– Loads – 25%

– Stores 15%

– ALU/RR – 40%

– Branches & jumps – 20%
• 1/3 unconditional (always taken)

• 1/3 conditional taken, 1/3 conditional not taken

IBM Experience

• Cache Performance
– Assume 100% hit ratio (upper bound)

– Cache latency: I = D = 1 cycle default

• Load and branch scheduling
– Loads

• 25% cannot be scheduled (delay slot empty)

• 65% can be moved back 1 or 2 instructions

• 10% can be moved back 1 instruction

– Branches & jumps
• Unconditional – 100% schedulable (fill one delay slot)

• Conditional – 50% schedulable (fill one delay slot)

CPI Optimizations

• Goal and impediments
– CPI = 1, prevented by pipeline stalls

• No cache bypass of RF, no load/branch scheduling
– Load penalty: 2 cycles: 0.25 x 2 = 0.5 CPI

– Branch penalty: 2 cycles: 0.2 x 2/3 x 2 = 0.27 CPI

– Total CPI: 1 + 0.5 + 0.27 = 1.77 CPI

• Bypass, no load/branch scheduling
– Load penalty: 1 cycle: 0.25 x 1 = 0.25 CPI

– Total CPI: 1 + 0.25 + 0.27 = 1.52 CPI

More CPI Optimizations

• Bypass, scheduling of loads/branches
– Load penalty:

• 65% + 10% = 75% moved back, no penalty

• 25% => 1 cycle penalty

• 0.25 x 0.25 x 1 = 0.0625 CPI

– Branch Penalty
• 1/3 unconditional 100% schedulable => 1 cycle

• 1/3 cond. not-taken, => no penalty (predict not-taken)

• 1/3 cond. Taken, 50% schedulable => 1 cycle

• 1/3 cond. Taken, 50% unschedulable => 2 cycles

• 0.20 x [1/3 x 1 + 1/3 x 0.5 x 1 + 1/3 x 0.5 x 2] = 0.167

• Total CPI: 1 + 0.063 + 0.167 = 1.23 CPI

Simplify Branches

• Assume 90% can be PC-relative
– No register indirect, no register access

– Separate adder (like MIPS R3000)

– Branch penalty reduced

• Total CPI: 1 + 0.063 + 0.085 = 1.15 CPI = 0.87 IPC

PC-relative Schedulable Penalty

Yes (90%) Yes (50%) 0 cycle

Yes (90%) No (50%) 1 cycle

No (10%) Yes (50%) 1 cycle

No (10%) No (50%) 2 cycles

15% Overhead

from program

dependences

Processor Performance

• In the 1980’s (decade of pipelining):
– CPI: 5.0 => 1.15

• In the 1990’s (decade of superscalar):
– CPI: 1.15 => 0.5 (best case)

Processor Performance = ---------------
Time

 Program

Instructions Cycles

 Program Instruction

Time

Cycle

 (code size)

= X X

 (CPI) (cycle time)

Revisit Amdahl’s Law

• h = fraction of time in serial code
• f = fraction that is vectorizable
• v = speedup for f
• Overall speedup:

No. of
Processors

N

Time
1

h 1 - h

1 - f

f

v

f
f

Speedup

1

1

Revisit Amdahl’s Law

• Sequential bottleneck

• Even if v is infinite

– Performance limited by nonvectorizable
portion (1-f)

f

v

f
f

v

 1

1

1

1
lim

No. of
Processors

N

Time
1

h 1 - h

1 - f

f

Pipelined Performance Model

g = fraction of time pipeline is filled

1-g = fraction of time pipeline is not filled
(stalled)

1-g g

Pipeline
Depth

N

1

g = fraction of time pipeline is filled

1-g = fraction of time pipeline is not filled
(stalled)

1-g g

Pipeline
Depth

N

1

Pipelined Performance Model

Pipelined Performance Model

• Tyranny of Amdahl’s Law [Bob Colwell]
– When g is even slightly below 100%, a big performance

hit will result

– Stalled cycles are the key adversary and must be
minimized as much as possible

1-g g

Pipeline
Depth

N

1

Motivation for Superscalar
[Agerwala and Cocke]

Typical Range

Speedup jumps from 3 to 4.3

for N=6, f=0.8, but s =2 instead

of s=1 (scalar)

Superscalar Proposal

• Moderate tyranny of Amdahl’s Law

– Ease sequential bottleneck

– More generally applicable

– Robust (less sensitive to f)

– Revised Amdahl’s Law:

v

f

s

f
Speedup

1

1

Limits on Instruction Level
Parallelism (ILP)

Weiss and Smith [1984] 1.58

Sohi and Vajapeyam [1987] 1.81

Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)

Tjaden and Flynn [1973] 1.96

Uht [1986] 2.00

Smith et al. [1989] 2.00

Jouppi and Wall [1988] 2.40

Johnson [1991] 2.50

Acosta et al. [1986] 2.79

Wedig [1982] 3.00

Butler et al. [1991] 5.8

Melvin and Patt [1991] 6

Wall [1991] 7 (Jouppi disagreed)

Kuck et al. [1972] 8

Riseman and Foster [1972] 51 (no control dependences)

Nicolau and Fisher [1984] 90 (Fisher’s optimism)

Superscalar Proposal

• Go beyond single instruction pipeline, achieve
IPC > 1

• Dispatch multiple instructions per cycle
• Provide more generally applicable form of

concurrency (not just vectors)
• Geared for sequential code that is hard to

parallelize otherwise
• Exploit fine-grained or instruction-level

parallelism (ILP)

Classifying ILP Machines

[Jouppi, DECWRL 1991]
• Baseline scalar RISC

– Issue parallelism = IP = 1

– Operation latency = OP = 1

– Peak IPC = 1

1

2
3

4
5

6

IF DE EX WB

1 2 3 4 5 6 7 8 90

TIME IN CYCLES (OF BASELINE MACHINE)

S
U

C
C

E
S

S
IV

E
IN

S
T

R
U

C
T

IO
N

S

Classifying ILP Machines

[Jouppi, DECWRL 1991]

• Superpipelined: cycle time = 1/m of baseline

– Issue parallelism = IP = 1 inst / minor cycle

– Operation latency = OP = m minor cycles

– Peak IPC = m instr / major cycle (m x speedup?)

1
2

3
4

5

IF DE EX WB

6

1 2 3 4 5 6

Classifying ILP Machines

[Jouppi, DECWRL 1991]
• Superscalar:

– Issue parallelism = IP = n inst / cycle

– Operation latency = OP = 1 cycle

– Peak IPC = n instr / cycle (n x speedup?)

IF DE EX WB

1
2
3

4
5
6

9

7
8

Classifying ILP Machines

[Jouppi, DECWRL 1991]
• VLIW: Very Long Instruction Word

– Issue parallelism = IP = n inst / cycle

– Operation latency = OP = 1 cycle

– Peak IPC = n instr / cycle = 1 VLIW / cycle

IF DE

EX

WB

Classifying ILP Machines

[Jouppi, DECWRL 1991]
• Superpipelined-Superscalar

– Issue parallelism = IP = n inst / minor cycle

– Operation latency = OP = m minor cycles

– Peak IPC = n x m instr / major cycle

IF DE EX WB

1
2
3

4
5
6

9

7
8

Superscalar vs. Superpipelined

• Roughly equivalent performance

– If n = m then both have about the same IPC

– Parallelism exposed in space vs. time

Time in Cycles (of Base Machine)
0 1 2 3 4 5 6 7 8 9

SUPERPIPELINED

10 11 12 13

SUPERSCALAR
Key:

IFetch
Dcode

Execute

Writeback

Superscalar Challenges

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

