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Pipelining to Superscalar 

• Forecast 

– Real pipelines 

– IBM RISC Experience 

– The case for superscalar 

– Instruction-level parallel machines 

– Superscalar pipeline organization 

– Superscalar pipeline design 



MIPS R2000/R3000 Pipeline 

Stage Phase Function performed 

IF φ1 
Translate virtual instr. addr. using TLB 

φ2 
Access I-cache 

RD φ1 
Return instruction from I-cache, check tags & parity 

φ2 
Read RF; if branch, generate target 

ALU φ1 
Start ALU op; if branch, check condition 

φ2 
Finish ALU op; if ld/st, translate addr 

MEM φ1 
Access D-cache 

φ2 
Return data from D-cache, check tags & parity 

WB φ1 
Write RF 

φ2 

Separate 

Adder 



Intel i486 5-stage Pipeline 

Stage Function Performed 

IF Fetch instruction from 32B prefetch buffer 

 (separate fetch unit fills and flushes prefetch buffer) 

ID-1 Translate instr. Into control signals or microcode address 

Initiate address generation and memory access 

ID-2 Access microcode memory 

Send microinstruction(s) to execute unit 

EX Execute ALU and memory operations 

WB Write back to RF 

Prefetch Queue 

Holds 2 x 16B 

??? instructions 



IBM RISC Experience [Agerwala and Cocke 1987] 

• Internal IBM study: Limits of a scalar pipeline? 
• Memory Bandwidth 

– Fetch 1 instr/cycle from I-cache 

– 40% of instructions are load/store (D-cache) 

• Code characteristics (dynamic) 
– Loads – 25% 

– Stores 15% 

– ALU/RR – 40% 

– Branches & jumps – 20% 
• 1/3 unconditional (always taken) 

• 1/3 conditional taken, 1/3 conditional not taken 



IBM Experience 

• Cache Performance 
– Assume 100% hit ratio (upper bound) 

– Cache latency: I = D = 1 cycle default 

• Load and branch scheduling 
– Loads 

• 25% cannot be scheduled (delay slot empty) 

• 65% can be moved back 1 or 2 instructions 

• 10% can be moved back 1 instruction 

– Branches & jumps 
• Unconditional – 100% schedulable (fill one delay slot) 

• Conditional – 50% schedulable (fill one delay slot) 



CPI Optimizations 

• Goal and impediments 
– CPI = 1, prevented by pipeline stalls 

• No cache bypass of RF, no load/branch scheduling 
– Load penalty: 2 cycles: 0.25 x 2 = 0.5 CPI 

– Branch penalty: 2 cycles: 0.2 x 2/3 x 2 = 0.27 CPI 

– Total CPI: 1 + 0.5 + 0.27 = 1.77 CPI 

• Bypass, no load/branch scheduling 
– Load penalty: 1 cycle: 0.25 x 1 = 0.25 CPI 

– Total CPI: 1 + 0.25 + 0.27 = 1.52 CPI 



More CPI Optimizations 

• Bypass, scheduling of loads/branches 
– Load penalty: 

• 65% + 10% = 75% moved back, no penalty 

• 25% => 1 cycle penalty 

• 0.25 x 0.25 x 1 = 0.0625 CPI 

– Branch Penalty 
• 1/3 unconditional 100% schedulable => 1 cycle 

• 1/3 cond. not-taken, => no penalty (predict not-taken) 

• 1/3 cond. Taken, 50% schedulable => 1 cycle 

• 1/3 cond. Taken, 50% unschedulable => 2 cycles 

• 0.20 x [1/3 x 1 + 1/3 x 0.5 x 1 + 1/3 x 0.5 x 2] = 0.167 

• Total CPI: 1 + 0.063 + 0.167 = 1.23 CPI 
 



Simplify Branches 

• Assume 90% can be PC-relative 
– No register indirect, no register access 

– Separate adder (like MIPS R3000) 

– Branch penalty reduced 

• Total CPI: 1 + 0.063 + 0.085 = 1.15 CPI = 0.87 IPC 

PC-relative Schedulable Penalty 

Yes (90%) Yes (50%) 0 cycle 

Yes (90%) No (50%) 1 cycle 

No (10%) Yes (50%) 1 cycle 

No (10%) No (50%) 2 cycles 

15% Overhead 

from program 

dependences 



Processor Performance 

• In the 1980’s (decade of pipelining): 
– CPI: 5.0 => 1.15 

• In the 1990’s (decade of superscalar): 
– CPI: 1.15 => 0.5 (best case) 

Processor Performance  =   --------------- 
Time 

 Program 

Instructions    Cycles 

 Program Instruction 

Time 

Cycle 

 (code size) 

= X X 

 (CPI)  (cycle time) 



Revisit Amdahl’s Law 

• h = fraction of time in serial code 
• f = fraction that is vectorizable 
• v = speedup for f 
• Overall speedup: 
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Revisit Amdahl’s Law 

• Sequential bottleneck 

• Even if v is infinite 

– Performance limited by nonvectorizable 
portion (1-f) 
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Pipelined Performance Model 

g = fraction of time pipeline is filled 

1-g = fraction of time pipeline is not filled 
(stalled) 

1-g g

Pipeline
Depth

N

1



g = fraction of time pipeline is filled 

1-g = fraction of time pipeline is not filled 
(stalled) 

1-g g 

Pipeline 
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N 
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Pipelined Performance Model 



Pipelined Performance Model 

• Tyranny of Amdahl’s Law [Bob Colwell] 
– When g is even slightly below 100%, a big performance 

hit will result 

– Stalled cycles are the key adversary and must be 
minimized as much as possible 

1-g g 

Pipeline 
Depth 

N 
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Motivation for Superscalar 
[Agerwala and Cocke] 

Typical Range 

Speedup jumps from 3 to 4.3 

for N=6, f=0.8, but s =2 instead 

of s=1 (scalar) 



Superscalar Proposal 

• Moderate tyranny of Amdahl’s Law 

– Ease sequential bottleneck 

– More generally applicable 

– Robust (less sensitive to f) 

– Revised Amdahl’s Law: 
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Limits on Instruction Level 
Parallelism (ILP) 

Weiss and Smith [1984] 1.58 

Sohi and Vajapeyam [1987] 1.81 

Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck) 

Tjaden and Flynn [1973] 1.96 

Uht [1986] 2.00 

Smith et al. [1989] 2.00 

Jouppi and Wall [1988] 2.40 

Johnson [1991] 2.50 

Acosta et al. [1986] 2.79 

Wedig [1982] 3.00 

Butler et al. [1991] 5.8 

Melvin and Patt [1991] 6 

Wall [1991] 7 (Jouppi disagreed) 

Kuck et al. [1972] 8 

Riseman and Foster [1972] 51 (no control dependences) 

Nicolau and Fisher [1984] 90 (Fisher’s optimism) 



Superscalar Proposal 

• Go beyond single instruction pipeline, achieve 
IPC > 1 

• Dispatch multiple instructions per cycle 
• Provide more generally applicable form of 

concurrency (not just vectors) 
• Geared for sequential code that is hard to 

parallelize otherwise 
• Exploit fine-grained or instruction-level 

parallelism (ILP) 



Classifying ILP Machines 

[Jouppi, DECWRL 1991] 
• Baseline scalar RISC 

– Issue parallelism = IP = 1 

– Operation latency = OP = 1 

– Peak IPC = 1 
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Classifying ILP Machines 

[Jouppi, DECWRL 1991] 

• Superpipelined: cycle time = 1/m of baseline 

– Issue parallelism = IP = 1 inst / minor cycle 

– Operation latency = OP = m minor cycles 

– Peak IPC = m instr / major cycle (m x speedup?) 
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Classifying ILP Machines 

[Jouppi, DECWRL 1991] 
• Superscalar: 

– Issue parallelism = IP = n inst / cycle 

– Operation latency = OP = 1 cycle 

– Peak IPC = n instr /  cycle (n x speedup?) 

IF DE EX WB
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Classifying ILP Machines 

[Jouppi, DECWRL 1991] 
• VLIW: Very Long Instruction Word 

– Issue parallelism = IP = n inst / cycle 

– Operation latency = OP = 1 cycle 

– Peak IPC = n instr /  cycle = 1 VLIW / cycle 

IF DE

EX

WB



Classifying ILP Machines 

[Jouppi, DECWRL 1991] 
• Superpipelined-Superscalar 

– Issue parallelism = IP = n inst / minor cycle 

– Operation latency = OP = m minor cycles 

– Peak IPC = n x m instr /  major cycle 

IF DE EX WB
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Superscalar vs. Superpipelined 

• Roughly equivalent performance 

– If n = m then both have about the same IPC 

– Parallelism exposed in space vs. time 

Time in Cycles (of Base Machine)
0 1 2 3 4 5 6 7 8 9

SUPERPIPELINED

10 11 12 13

SUPERSCALAR
Key:

IFetch
Dcode

Execute

Writeback



Superscalar Challenges 

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data 

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow


