
ECE/CS 552: Cache Design

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Memory Hierarchy

CPU

I & D L1 Cache

Shared L2 Cache

Main Memory

Disk

Temporal Locality
•Keep recently referenced
items at higher levels
•Future references satisfied
quickly

Spatial Locality
•Bring neighbors of recently
referenced to higher levels
•Future references satisfied
quickly

2

Four Burning Questions

• These are:
– Placement

• Where can a block of memory go?

– Identification
• How do I find a block of memory?

– Replacement
• How do I make space for new blocks?

– Write Policy
• How do I propagate changes?

• Consider these for caches
– Usually SRAM

• Will consider main memory, disks later
3

Placement

Memory
Type

Placement Comments

Registers Anywhere;
Int, FP, SPR

Compiler/programmer
manages

Cache

(SRAM)

Fixed in H/W Direct-mapped,

set-associative,

fully-associative

DRAM Anywhere O/S manages

Disk Anywhere O/S manages

HUH?

4

Placement

• Address Range

– Exceeds cache capacity

• Map address to finite capacity

– Called a hash

– Usually just masks high-order bits

• Direct-mapped

– Block can only exist in one location

– Hash collisions cause problems

SRAM Cache

Hash

Address

Index

Data Out

Index Offset

32-bit Address

Offset

Block Size

5

Placement

• Fully-associative
– Block can exist anywhere

– No more hash collisions

• Identification
– How do I know I have the right

block?

– Called a tag check
• Must store address tags

• Compare against address

• Expensive!
– Tag & comparator per block

SRAM Cache

Hash

Address

Data Out

Offset

32-bit Address

Offset

Tag

Hit
Tag Check

?=

Tag

6

Placement

• Set-associative

– Block can be in a
locations

– Hash collisions:
• a still OK

• Identification

– Still perform tag check

– However, only a in
parallel

SRAM Cache

Hash

Address

Data Out

Offset

Index

Offset

32-bit Address

Tag Index

a Tags a Data Blocks
Index

?=
?=

?=
?=

Tag

7

Placement and Identification

• Consider: <BS=block size, S=sets, B=blocks>
– <64,64,64>: o=6, i=6, t=20: direct-mapped (S=B)

– <64,16,64>: o=6, i=4, t=22: 4-way S-A (S = B / 4)

– <64,1,64>: o=6, i=0, t=26: fully associative (S=1)

• Total size = BS x B = BS x S x (B/S)

Offset

32-bit Address

Tag Index

Portion Length Purpose

Offset o=log2(block size) Select word within block

Index i=log2(number of sets) Select set of blocks

Tag t=32 - o - i ID block within set

8

Replacement

• Cache has finite size

– What do we do when it is full?

• Analogy: desktop full?

– Move books to bookshelf to make room

• Same idea:

– Move blocks to next level of cache

9

Replacement

• How do we choose victim?
– Verbs: Victimize, evict, replace, cast out

• Several policies are possible
– FIFO (first-in-first-out)

– LRU (least recently used)

– NMRU (not most recently used)

– Pseudo-random (yes, really!)

• Pick victim within set where a = associativity
– If a <= 2, LRU is cheap and easy (1 bit)

– If a > 2, it gets harder

– Pseudo-random works pretty well for caches

10

Write Policy

• Memory hierarchy

– 2 or more copies of same block

• Main memory and/or disk

• Caches

• What to do on a write?

– Eventually, all copies must be changed

– Write must propagate to all levels

11

Write Policy

• Easiest policy: write-through
• Every write propagates directly through hierarchy

– Write in L1, L2, memory, disk (?!?)

• Why is this a bad idea?
– Very high bandwidth requirement

– Remember, large memories are slow

• Popular in real systems only to the L2
– Every write updates L1 and L2

– Beyond L2, use write-back policy

12

Write Policy

• Most widely used: write-back
• Maintain state of each line in a cache

– Invalid – not present in the cache

– Clean – present, but not written (unmodified)

– Dirty – present and written (modified)

• Store state in tag array, next to address tag
– Mark dirty bit on a write

• On eviction, check dirty bit
– If set, write back dirty line to next level

– Called a writeback or castout

13

Write Policy

• Complications of write-back policy
– Stale copies lower in the hierarchy

– Must always check higher level for dirty copies before
accessing copy in a lower level

• Not a big problem in uniprocessors
– In multiprocessors: the cache coherence problem

• I/O devices that use DMA (direct memory access)
can cause problems even in uniprocessors
– Called coherent I/O

– Must check caches for dirty copies before reading main
memory

14

Cache Example

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:

Tag0 Tag1 LRU

0

0

0

0

Reference Binary Set/Way Hit/Miss

Tag Array

15

Cache Example

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:

Tag0 Tag1 LRU

0

0

10 1

0

Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Tag Array

16

Cache Example

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:

Tag0 Tag1 LRU

0

0

10 1

0

Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Tag Array

17

Cache Example

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:

Tag0 Tag1 LRU

0

0

10 1

11 1

Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Tag Array

18

Cache Example

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:

Tag0 Tag1 LRU

10 1

0

10 1

11 1

Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Load 0x20 100000 0/0 Miss

Tag Array

19

Cache Example

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:

Tag0 Tag1 LRU

10 11 0

0

10 1

11 1

Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Load 0x20 100000 0/0 Miss

Load 0x33 110011 0/1 Miss

Tag Array

20

Cache Example

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:

Tag0 Tag1 LRU

01 11 1

0

10 1

11 1

Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Load 0x20 100000 0/0 Miss

Load 0x33 110011 0/1 Miss

Load 0x11 010001 0/0 (lru) Miss/Evict

Tag Array

21

Cache Example

• 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative

– Initially empty

– Only tag array shown on right

• Trace execution of:

Tag0 Tag1 LRU

01 11 1

0

10 d 1

11 1

Reference Binary Set/Way Hit/Miss

Load 0x2A 101010 2/0 Miss

Load 0x2B 101011 2/0 Hit

Load 0x3C 111100 3/0 Miss

Load 0x20 100000 0/0 Miss

Load 0x33 110011 0/1 Miss

Load 0x11 010001 0/0 (lru) Miss/Evict

Store 0x29 101001 2/0 Hit/Dirty

Tag Array

22

Caches and Pipelining

• Instruction cache
– No writes, so simpler

• Interface to pipeline:
– Fetch address (from PC)

– Supply instruction (to IR)

• What happens on a miss?
– Stall pipeline; inject nop

– Initiate cache fill from memory

– Supply requested instruction, end
stall condition

PC

IR

23

I-Caches and Pipelining

PC

IR
“NOP”

Hit/Miss

Tag Array Data Array

?=

Fill FSM

Memory

FILL FSM:
1. Fetch from memory

• Critical word first
• Save in fill buffer

2. Write data array
3. Write tag array
4. Miss condition ends

24

D-Caches and Pipelining

• Pipelining loads from cache

– Hit/Miss signal from cache

– Stalls pipeline or inject NOPs?

• Hard to do in current real designs, since wires are too
slow for global stall signals

– Instead, treat more like branch misprediction

• Cancel/flush pipeline

• Restart when cache fill logic is done

25

D-Caches and Pipelining
• Stores more difficult

– MEM stage:
• Perform tag check

• Only enable write on a hit

• On a miss, must not write (data corruption)

– Problem:
• Must do tag check and data array access sequentially

• This will hurt cycle time or force extra pipeline stage

• Extra pipeline stage delays loads as well: IPC hit!

26

Pipelining Writes (1)
• Simplest option:

– Write-through, no-write-allocate, invalidate on write miss

– Write proceeds in parallel with tag check

– Write miss invalidates block that was corrupted

• Performance implications
– Write misses don’t fetch block: read-following-write is common

pattern, now read will incur a miss

– Only works for direct-mapped (don’t know which block to write until
after tag check completes)

• Not a great solution, but OK for 552 project

27

Solution: Pipelining Writes (2)

• Store #1 performs only a tag check in the MEM stage
– <value, address, cache way> placed in store buffer (SB)

• When store #2 reaches MEM stage
– Store #1 writes to data cache

• In the meantime, must handle RAW to store buffer
– Pending write in SB to address A
– Newer loads must check SB for conflict
– Stall/flush SB, or forward directly from SB

• Any load miss must also flush SB first
– Otherwise SB D$ write may be to wrong line

• Can expand to >1 entry to overlap store misses

MEM
St#1

WB
St#2

WB
St#1

MEM
St#2

…

W $
St#1

…

Perform D$ Write Tag Check
If hit place in SB
If miss stall, start fill

28

Store
Buffer

Summary

• Cache design

– Placement

– Identification

– Replacement

– Write Policy

• Pipeline integration of caches

29

