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Memory Hierarchy 

CPU 

I & D L1 Cache 

Shared L2 Cache 

Main Memory 

Disk 

Temporal Locality 
•Keep recently referenced 
items at higher levels 
•Future references satisfied 
quickly 

Spatial Locality 
•Bring neighbors of recently 
referenced to higher levels 
•Future references satisfied 
quickly 
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Four Burning Questions 

• These are: 
– Placement 

• Where can a block of memory go? 

– Identification 
• How do I find a block of memory? 

– Replacement 
• How do I make space for new blocks? 

– Write Policy 
• How do I propagate changes? 

• Consider these for caches 
– Usually SRAM 

• Will consider main memory, disks later 
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Placement 

Memory 
Type 

Placement Comments 

Registers Anywhere; 
Int, FP, SPR 

Compiler/programmer 
manages 

Cache  

(SRAM) 

Fixed in H/W Direct-mapped, 

set-associative,  

fully-associative 

DRAM Anywhere O/S manages 

Disk Anywhere O/S manages 

HUH? 
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Placement 

• Address Range 

– Exceeds cache capacity 

• Map address to finite capacity 

– Called a hash 

– Usually just masks high-order bits 

• Direct-mapped 

– Block can only exist in one location 

– Hash collisions cause problems 

SRAM Cache 

Hash 

Address 

Index 

Data Out 

Index Offset 

32-bit Address 

Offset 

Block Size 
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Placement 

• Fully-associative 
– Block can exist anywhere 

– No more hash collisions 

• Identification 
– How do I know I have the right 

block? 

– Called a tag check 
• Must store address tags 

• Compare against address 

• Expensive! 
– Tag & comparator per block 

SRAM Cache 

Hash 

Address 

Data Out 

Offset 

32-bit Address 

Offset 

Tag 

Hit 
Tag Check 

?= 

Tag 
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Placement 

• Set-associative 

– Block can be in a 
locations 

– Hash collisions:  
• a still OK 

• Identification 

– Still perform tag check 

– However, only a in 
parallel 

SRAM Cache 

Hash 

Address 

Data Out 

Offset 

Index 

Offset 

32-bit Address 

Tag Index 

a Tags a Data Blocks 
Index 

?= 
?= 

?= 
?= 

Tag 
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Placement and Identification 

• Consider: <BS=block size, S=sets, B=blocks> 
– <64,64,64>: o=6, i=6, t=20: direct-mapped (S=B) 

– <64,16,64>: o=6, i=4, t=22: 4-way S-A (S = B / 4) 

– <64,1,64>: o=6, i=0, t=26: fully associative (S=1) 

• Total size = BS x B = BS x S x (B/S) 

Offset 

32-bit Address 

Tag Index 

Portion Length Purpose 

Offset o=log2(block size) Select word within block 

Index i=log2(number of sets) Select set of blocks 

Tag t=32 - o - i ID block within set 
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Replacement 

• Cache has finite size 

– What do we do when it is full? 

• Analogy: desktop full? 

– Move books to bookshelf to make room 

• Same idea: 

– Move blocks to next level of cache 
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Replacement 

• How do we choose victim? 
– Verbs: Victimize, evict, replace, cast out 

• Several policies are possible 
– FIFO (first-in-first-out) 

– LRU (least recently used) 

– NMRU (not most recently used) 

– Pseudo-random (yes, really!) 

• Pick victim within set where a = associativity 
– If a <= 2, LRU is cheap and easy (1 bit) 

– If a > 2, it gets harder 

– Pseudo-random works pretty well for caches 
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Write Policy 

• Memory hierarchy 

– 2 or more copies of same block 

• Main memory and/or disk 

• Caches 

• What to do on a write? 

– Eventually, all copies must be changed 

– Write must propagate to all levels 
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Write Policy 

• Easiest policy: write-through 
• Every write propagates directly through hierarchy 

– Write in L1, L2, memory, disk (?!?) 

• Why is this a bad idea? 
– Very high bandwidth requirement 

– Remember, large memories are slow 

• Popular in real systems only to the L2 
– Every write updates L1 and L2 

– Beyond L2, use write-back policy 
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Write Policy 

• Most widely used: write-back 
• Maintain state of each line in a cache 

– Invalid – not present in the cache 

– Clean – present, but not written (unmodified) 

– Dirty – present and written (modified) 

• Store state in tag array, next to address tag 
– Mark dirty bit on a write 

• On eviction, check dirty bit 
– If set, write back dirty line to next level 

– Called a writeback or castout 
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Write Policy 

• Complications of write-back policy 
– Stale copies lower in the hierarchy 

– Must always check higher level for dirty copies before 
accessing copy in a lower level 

• Not a big problem in uniprocessors 
– In multiprocessors: the cache coherence problem 

• I/O devices that use DMA (direct memory access) 
can cause problems even in uniprocessors 
– Called coherent I/O 

– Must check caches for dirty copies before reading main 
memory 
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Cache Example 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 

Tag0 Tag1 LRU 

0 

0 

0 

0 

Reference Binary Set/Way Hit/Miss 

Tag Array 
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Cache Example 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 

Tag0 Tag1 LRU 

0 

0 

10 1 

0 

Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Tag Array 
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Cache Example 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 

Tag0 Tag1 LRU 

0 

0 

10 1 

0 

Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Tag Array 
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Cache Example 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 

Tag0 Tag1 LRU 

0 

0 

10 1 

11 1 

Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Tag Array 
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Cache Example 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 

Tag0 Tag1 LRU 

10 1 

0 

10 1 

11 1 

Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Load 0x20 100000 0/0 Miss 

Tag Array 
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Cache Example 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 

Tag0 Tag1 LRU 

10 11 0 

0 

10 1 

11 1 

Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Load 0x20 100000 0/0 Miss 

Load 0x33 110011 0/1 Miss 

Tag Array 
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Cache Example 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 

Tag0 Tag1 LRU 

01 11 1 

0 

10 1 

11 1 

Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Load 0x20 100000 0/0 Miss 

Load 0x33 110011 0/1 Miss 

Load 0x11 010001 0/0 (lru) Miss/Evict 

Tag Array 
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Cache Example 

• 32B Cache: <BS=4,S=4,B=8> 
– o=2, i=2, t=2; 2-way set-associative 

– Initially empty 

– Only tag array shown on right 

• Trace execution of: 

Tag0 Tag1 LRU 

01 11 1 

0 

10 d 1 

11 1 

Reference Binary Set/Way Hit/Miss 

Load 0x2A 101010 2/0 Miss 

Load 0x2B 101011 2/0 Hit 

Load 0x3C 111100 3/0 Miss 

Load 0x20 100000 0/0 Miss 

Load 0x33 110011 0/1 Miss 

Load 0x11 010001 0/0 (lru) Miss/Evict 

Store 0x29 101001 2/0 Hit/Dirty 

Tag Array 
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Caches and Pipelining 

• Instruction cache 
– No writes, so simpler 

• Interface to pipeline: 
– Fetch address (from PC) 

– Supply instruction (to IR) 

• What happens on a miss? 
– Stall pipeline; inject nop 

– Initiate cache fill from memory 

– Supply requested instruction, end 
stall condition 

PC 

IR 
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I-Caches and Pipelining 

PC 

IR 
“NOP” 

Hit/Miss 

Tag Array Data Array 

?= 

Fill FSM 

Memory 

FILL FSM: 
1. Fetch from memory 

• Critical word first 
• Save in fill buffer 

2. Write data array 
3. Write tag array 
4. Miss condition ends 
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D-Caches and Pipelining 

• Pipelining loads from cache 

– Hit/Miss signal from cache 

– Stalls pipeline or inject NOPs? 

• Hard to do in current real designs, since wires are too 
slow for global stall signals 

– Instead, treat more like branch misprediction 

• Cancel/flush pipeline 

• Restart when cache fill logic is done 
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D-Caches and Pipelining 
• Stores more difficult 

– MEM stage: 
• Perform tag check 

• Only enable write on a hit 

• On a miss, must not write (data corruption) 

– Problem: 
• Must do tag check and data array access sequentially 

• This will hurt cycle time or force extra pipeline stage 

• Extra pipeline stage delays loads as well: IPC hit! 
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Pipelining Writes (1) 
• Simplest option: 

– Write-through, no-write-allocate, invalidate on write miss 

– Write proceeds in parallel with tag check 

– Write miss invalidates block that was corrupted 

• Performance implications 
– Write misses don’t fetch block: read-following-write is common 

pattern, now read will incur a miss 

– Only works for direct-mapped (don’t know which block to write until 
after tag check completes) 

 

• Not a great solution, but OK for 552 project 
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Solution: Pipelining Writes (2) 

• Store #1 performs only a tag check in the MEM stage 
– <value, address, cache way> placed in store buffer (SB) 

• When store #2 reaches MEM stage 
– Store #1 writes to data cache 

• In the meantime, must handle RAW to store buffer 
– Pending write in SB to address A 
– Newer loads must check SB for conflict 
– Stall/flush SB, or forward directly from SB 

• Any load miss must also flush SB first  
– Otherwise SB D$ write may be to wrong line 

• Can expand to >1 entry to overlap store misses 

MEM 
St#1 

WB 
St#2 

WB 
St#1 

MEM 
St#2 

… 

W $ 
St#1 

… 

Perform D$ Write Tag Check 
If hit place in SB 
If miss stall, start fill 
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Buffer 



Summary 

• Cache design 

– Placement 

– Identification 

– Replacement 

– Write Policy 

• Pipeline integration of caches 
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