THE UNIVERSITY

WISCONSIN

MADISON

ECE/CS 552: Cache Design

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Memory Hierarchy

Temporal Locality

* Keep recently referenced
items at higher levels

e Future references satisfied
quickly

Spatial Locality

*Bring neighbors of recently

referenced to higher levels
e Future references satisfied
quickly

Four Burning Questions

* These are:
— Placement
* Where can a block of memory go?

— ldentification
* How do | find a block of memory?

— Replacement
* How do | make space for new blocks?

— Write Policy

 How do | propagate changes?
* Consider these for caches
— Usually SRAM

* Will consider main memory, disks later

Placement

? |

Memory Placement Comments

Type

Registers | Anywhere; |Compiler/programmer
Int, FP, SPR | manages HUH?

Cache Fixed in H/W | Direct-mapped, %

(SRAM) set-associative,

fully-associative
DRAM Anywhere O/S manages
Disk Anywhere O/S manages

Placement Block size

Address

N
N

* Address Range
— Exceeds cache capacity

 Map address to finite capacity
— Called a hash
— Usually just masks high-order bits

Offset

* Direct-mapped

— Block can only exist in one location
32-bit Address

5

Data Out

— Hash collisions cause problems

Placement

Address

* Fully-associative
— Block can exist anywhere
— No more hash collisions
* |dentification
— How do | know | have the right

block?
— Called a tag check Offset
* Must store address tags Data Out
* Compare against address 32-bit Address

Bhtes o]
— Tag & comparator per block

Placement

Address

e Set-associative

— Block can be in a
locations

— Hash collisions:
e g still OK

* |dentification
— Still perform tag check |Tag

— However, only a in
parallel

Offset

32-bit Address

_ 7

Data Out

Placement and Identification

32-bit Address

Portion Length Purpose

Offset o=log,(block size) Select word within block
Index I=log,(number of sets) | Select set of blocks

Tag t=32-0-1 ID block within set

 Consider: <BS=block size, S=sets, B=blocks>
— <64,64,64>: 0=6, i=6, t=20: direct-mapped (S=B)
— <64,16,64>: 0=6, i=4, t=22: 4-way S-A (S =B / 4)
— <64,1,64>: 0=6, i=0, t=26: fully associative (S=1)
* Total size=BS x B =BS xS x (B/S)

Replacement

e Cache has finite size
— What do we do when it is full?

* Analogy: desktop full?

— Move books to bookshelf to make room

e Same idea:
— Move blocks to next level of cache

Replacement

* How do we choose victim?
— Verbs: Victimize, evict, replace, cast out
e Several policies are possible
— FIFO (first-in-first-out)
— LRU (least recently used)
— NMRU (not most recently used)
— Pseudo-random (yes, really!)
* Pick victim within set where a = associativity
— Ifa<=2, LRU is cheap and easy (1 bit)
— Ifa > 2, it gets harder
— Pseudo-random works pretty well for caches

10

Write Policy

* Memory hierarchy

— 2 or more copies of same block
* Main memory and/or disk
* Caches

* What to do on a write?
— Eventually, all copies must be changed
— Write must propagate to all levels

11

Write Policy

Easiest policy: write-through

Every write propagates directly through hierarchy
— Write in L1, L2, memory, disk (?!?)

Why is this a bad idea?

— Very high bandwidth requirement

— Remember, large memories are slow

Popular in real systems only to the L2

— Every write updates L1 and L2

— Beyond L2, use write-back policy

12

Write Policy

Most widely used: write-back

Maintain state of each line in a cache

— Invalid — not present in the cache

— Clean — present, but not written (unmodified)
— Dirty — present and written (modified)
Store state in tag array, next to address tag
— Mark dirty bit on a write

On eviction, check dirty bit

— |If set, write back dirty line to next level

— Called a writeback or castout

13

Write Policy

 Complications of write-back policy
— Stale copies lower in the hierarchy

— Must always check higher level for dirty copies before
accessing copy in a lower level

* Not a big problem in uniprocessors
— In multiprocessors: the cache coherence problem

* |/O devices that use DMA (direct memory access)
can cause problems even in uniprocessors

— Called coherent I/O

— Must check caches for dirty copies before reading main
memory

14

Cache Example

e 32B Cache: <BS=4,5=4,B=8>
— 0=2, i=2, t=2; 2-way set-associative

— Initially empty

— Only tag array shown on right
* Trace execution of:

Reference

Binary

Set/Way

Hit/Miss

Tag Array
Tag0 | Tagl | LRU
0
0
0

15

Cache Example

Tag Array
e 32B Cache: <BS=4,5=4,B=8> Tag0 | Tagl | LRU
— 0=2, i=2, t=2; 2-way set-associative
— Initially empty 0
— Only tag array shown on right 0
* Trace execution of:
Reference | Binary Set/Way | Hit/Miss 10 1
Load Ox2A | 101010 |2/0 Miss
0

16

Cache Example

32B Cache: <BS=4,5=4,B=8>

— 0=2, i=2, t=2; 2-way set-associative
— Initially empty
— Only tag array shown on right
Trace execution of:

Reference | Binary Set/Way | Hit/Miss
Load Ox2A | 101010 |2/0 Miss
Load 0x2B | 101011 |2/0 Hit

Tag Array
Tag0 | Tagl | LRU

0

0
10 1

0

17

Cache Example

32B Cache: <BS=4,5=4,B=8>

— 0=2, i=2, t=2; 2-way set-associative
— Initially empty
— Only tag array shown on right
Trace execution of:

Reference | Binary Set/Way | Hit/Miss
Load Ox2A | 101010 |2/0 Miss
Load Ox2B | 101011 |2/0 Hit
Load 0x3C | 111100 |3/0 Miss

Tag Array
Tag0 | Tagl | LRU
0
0
10 1
11 1

18

Cache Example

32B Cache: <BS=4,5=4,B=8>

— 0=2, i=2, t=2; 2-way set-associative
— Initially empty
— Only tag array shown on right
Trace execution of:

Tag Array
Tag0 | Tagl | LRU
10 1

0
10 1
11 1

Reference | Binary Set/Way | Hit/Miss
Load Ox2A | 101010 |2/0 Miss
Load Ox2B | 101011 |2/0 Hit
Load 0x3C | 111100 |3/0 Miss
Load 0x20 | 100000 |0/0 Miss

19

Cache Example

32B Cache: <BS=4,5=4,B=8>

— 0=2, i=2, t=2; 2-way set-associative
— Initially empty
— Only tag array shown on right
Trace execution of:

Tag Array
Tag0 | Tagl | LRU
10 11 0

0
10 1
11 1

Reference | Binary Set/Way | Hit/Miss
Load Ox2A | 101010 |2/0 Miss
Load Ox2B | 101011 |2/0 Hit
Load 0x3C | 111100 |3/0 Miss
Load 0x20 | 100000 |0/0 Miss
Load 0x33 | 110011 |0/1 Miss

20

Cache Example

32B Cache: <BS=4,5=4,B=8>

— 0=2, i=2, t=2; 2-way set-associative
— Initially empty
— Only tag array shown on right
Trace execution of:

Tag Array
Tag0 | Tagl | LRU
01 11 1

0
10 1
11 1

Reference | Binary Set/Way | Hit/Miss
Load Ox2A | 101010 |2/0 Miss

Load Ox2B | 101011 |2/0 Hit

Load 0x3C | 111100 |3/0 Miss

Load 0x20 | 100000 |0/0 Miss

Load 0x33 | 110011 |0/1 Miss

Load Ox11 [010001 |0/O (lru) | Miss/Evict

21

Cache Example

32B Cache: <BS=4,5=4,B=8>

— 0=2, i=2, t=2; 2-way set-associative
— Initially empty
— Only tag array shown on right
Trace execution of:

Tag Array
Tag0 | Tagl | LRU
01 11 1

0
10 d 1
11 1

Reference | Binary Set/Way | Hit/Miss
Load Ox2A | 101010 |2/0 Miss

Load Ox2B | 101011 |2/0 Hit

Load 0x3C | 111100 |3/0 Miss

Load 0x20 | 100000 |0/0 Miss

Load 0x33 | 110011 |0/1 Miss

Load Ox11 [010001 |0/O (lru) | Miss/Evict
Store 0x29 | 101001 | 2/0 Hit/Dirty

22

Caches and Pipelining

* Instruction cache

— No writes, so simpler
* Interface to pipeline:

— Fetch address (from PC)

— Supply instruction (to IR)
 What happens on a miss?

— Stall pipeline; inject nop

— Initiate cache fill from memory

— Supply requested instruction, end
stall condition

23

I-Caches and Pipelining

|

Hit/Miss

5> LY [

FILL FSM:
1.

Fetch from memory

e Critical word first
e Save in fill buffer
Write data array
Write tag array

Miss condition ends

24

D-Caches and Pipelining

* Pipelining loads from cache
— Hit/Miss signal from cache
— Stalls pipeline or inject NOPs?

* Hard to do in current real designs, since wires are too
slow for global stall signals

— Instead, treat more like branch misprediction
* Cancel/flush pipeline
* Restart when cache fill logic is done

25

D-Caches and Pipelining

Stores more difficult

— MEM stage:
* Perform tag check
* Only enable write on a hit
* On a miss, must not write (data corruption)

— Problem:
* Must do tag check and data array access sequentially
* This will hurt cycle time or force extra pipeline stage
* Extra pipeline stage delays loads as well: IPC hit!

26

Pipelining Writes (1)

Simplest option:
— Write-through, no-write-allocate, invalidate on write miss
— Write proceeds in parallel with tag check
— Write miss invalidates block that was corrupted

Performance implications

— Write misses don’t fetch block: read-following-write is common
pattern, now read will incur a miss

— Only works for direct-mapped (don’t know which block to write until
after tag check completes)

Not a great solution, but OK for 552 project

27

Store

Buffer \

Solution: Pi{pelining Writes (2)
A

Tag Check \ / Perform DS Write
If hit place in SB
If miss stall, start fill \

e Store #1 performs only a tag check in the MEM stage
— <value, address, cache way> placed in store buffer (SB)
When store #2 reaches MEM stage
— Store #1 writes to data cache
* |nthe meantime, must handle RAW to store buffer
— Pending write in SB to address A
— Newer loads must check SB for conflict
— Stall/flush SB, or forward directly from SB
* Any load miss must also flush SB first
— Otherwise SB DS write may be to wrong line
* (Can expand to >1 entry to overlap store misses

Summary

e Cache design
— Placement
— ldentification
— Replacement
— Write Policy

* Pipeline integration of caches

29

