> WITHEONSIN ECE/CS 552: Integer Multipliers
(C) Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Basic Arithmetic and the ALU

- Earlier in the semester
- Number representations, 2's complement, unsigned
- Addition/Subtraction
- Add/Sub ALU
- Full adder, ripple carry, subtraction
- Carry-lookahead addition
- Logical operations
- and, or, xor, nor, shifts
- Overflow

Basic Arithmetic and the ALU

- Now
- Integer multiplication
- Booth's algorithm
- This is not crucial for the project

Multiplication

- Flashback to $3^{\text {rd }}$ grade
- Multiplier
- Multiplicand
- Partial products
- Final sum
- Base 10: $8 \times 9=72$
- PP: $8+0+0+64=72$
- How wide is the result?
$-\log (\mathrm{n} \times \mathrm{m})=\log (\mathrm{n})+\log (\mathrm{m})$
$-32 b \times 32 b=64 b$ result
$\left.\begin{array}{lllllll} & & & 1 & 0 & 0 & 0 \\ & & \mathrm{x} & 1 & 0 & 0 & 1 \\ & & & 1 & 0 & 0 & 0 \\ & & & 0 & 0 & 0 & 0\end{array}\right]$

Array Multiplier

			1	0	0	0
$\begin{array}{lllll}\mathrm{x} & 1 & 0 & 0 & 1\end{array}$						
			1	0	0	0
		0	0	0	0	
	0	0	0	0		
	0	0	0			
	0	0	1	0	0	

- Adding all partial products simultaneously using an array of basic cells

16-bit Array Multiplier

Conceptually straightforward
Fairly expensive hardware, integer multiplies relatively rare Most used in array address calc: replace with shifts

Instead: Multicycle Multipliers

- Combinational multipliers
- Very hardware-intensive
- Integer multiply relatively rare
- Not the right place to spend resources
- Multicycle multipliers
- Iterate through bits of multiplier
- Conditionally add shifted multiplicand

Multiplier

$\left.\begin{array}{rrrrr} & 100 & 0 \\ & \times 100 & 1 \\ & 1 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0\end{array}\right]$

64 bits

Multiplier

Multiplier Improvements

- Do we really need a 64-bit adder?
- No, since low-order bits are not involved
- Hence, just use a 32-bit adder
- Shift product register right on every step
- Do we really need a separate multiplier register?
- No, since low-order bits of 64-bit product are initially unused
- Hence, just store multiplier there initially

Multiplier

Multiplier

$\left.\begin{array}{rrrrr} & 1 & 0 & 0 & 0 \\ & \times 100 & 1 \\ & 1 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0\end{array}\right]$

1a. Add multiplicand to the left half of the product and place the result in the left half of the Product register

Signed Multiplication

- Recall
- For $p=a \times b$, if $a<0$ or $b<0$, then $p<0$
- If $a<0$ and $b<0$, then $p>0$
- Hence $\operatorname{sign}(\mathrm{p})=\operatorname{sign}(\mathrm{a})$ xor $\operatorname{sign}(\mathrm{b})$
- Hence
- Convert multiplier, multiplicand to positive number with ($\mathrm{n}-1$) bits
- Multiply positive numbers
- Compute sign, convert product accordingly
- Or,
- Perform sign-extension on shifts for prev. design
- Right answer falls out

Booth's Encoding

- Recall grade school trick
- When multiplying by 9:
- Multiply by 10 (easy, just shift digits left)
- Subtract once
- E.g.
- $123454 \times 9=123454 \times(10-1)=1234540-123454$
- Converts addition of six partial products to one shift and one subtraction
- Booth's algorithm applies same principle
- Except no ' 9 ' in binary, just ' 1 ' and ' 0 '
- So, it's actually easier!

Booth's Encoding

- Search for a run of ' 1 ' bits in the multiplier
- E.g. '0110' has a run of 2 ' 1 ' bits in the middle
- Multiplying by '0110’ (6 in decimal) is equivalent to multiplying by 8 and subtracting twice, since $6 \times m=(8-2)$ $x \mathrm{~m}=8 \mathrm{~m}-2 \mathrm{~m}$
- Hence, iterate right to left and:
- Subtract multiplicand from product at first ' 1 '
- Add multiplicand to product after last ' 1 '
- Don't do either for ' 1 ' bits in the middle

Booth's Algorithm

Current bit	Bit to right	Explanation	Example	Operation
1	0	Begins run of ' 1 '	00001111000	Subtract
1	1	${\text { Middle of run of ' } 11^{\prime}}$	00001111000	Nothing
0	1	End of a run of ' 1 '	00001111000	Add
0	0	Middle of a run of ' 0^{\prime}	00001111000	Nothing

Booth's Encoding

- Really just a new way to encode numbers
- Normally positionally weighted as 2^{n}
- With Booth, each position has a sign bit
- Can be extended to multiple bits

0	1	1	0	Binary
+1	0	-1	0	1-bit Booth
+2		-2		2-bit Booth

2-bits/cycle Booth Multiplier

- For every pair of multiplier bits
- If Booth’s encoding is '-2'
- Shift multiplicand left by 1 , then subtract
- If Booth's encoding is ' -1 '
- Subtract
- If Booth's encoding is ' 0 '
- Do nothing
- If Booth's encoding is ' 1 '
- Add
- If Booth's encoding is ' 2 '
- Shift multiplicand left by 1 , then add

2 bits/cycle Booth's

Current	Previous	Operation	Explanation
00	0	+0;shift 2	[00] => +0, [00] => +0; 2x(+0)+(+0)=+0
00	1	+M; shift 2	[00] $=>+0,[01]=>+M ; 2 x(+0)+(+M)=+M$
01	0	+M; shift 2	[01] $=>+\mathrm{M},[10]=>-M ; 2 \mathrm{l}(+\mathrm{M})+(-\mathrm{M})=+\mathrm{M}$
01	1	+2M; shift 2	[01] $=>+\mathrm{M},[11]=>+0 ; 2 x(+M)+(+0)=+2 M$
10	0	-2M; shift 2	[10] => -M, [00] => +0; 2x(-M)+(+0)=-2M
10	1	-M; shift 2	[10] $=>-\mathrm{M},[01] ~=>+M ; 2 x(-M)+(+M)=-M$
11	0	-M; shift 2	[11] $=>+0,[10]=>-M ; 2 x(+0)+(-M)=-M$
11	1	+0; shift 2	[11] $=>+0,[11]=>+0 ; 2 x(+0)+(+0)=+0$

Booth's Example

- Negative multiplicand:
$-6 \times 6=-36$
$1010 \times 0110,0110$ in Booth's encoding is $+0-0$ Hence:

11111010	$x 0$	00000000
11110100	$x-1$	00001100
11101000	$x 0$	00000000
11010000	$x+1$	11010000
	Final Sum:	$11011100(-36)$

Booth's Example

- Negative multiplier:
$-6 x-2=12$
$1010 \times 1110,1110$ in Booth's encoding is 00-0 Hence:

11111010	$x 0$	00000000
11110100	$x-1$	00001100
11101000	$x 0$	00000000
11010000	$x 0$	00000000
	Final Sum:	00001100 (12)

Summary

- Integer multiply
- Combinational
- Multicycle
- Booth's algorithm
© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Basic Arithmetic and the ALU

- Integer division
- Restoring, non-restoring
- These are not crucial for the project

Integer Division

- Again, back to $3^{\text {rd }}$ grade ($74 \div 8=9$ rem 2)

Integer Division

- How does hardware know if division fits?
- Condition: if remainder \geq divisor
- Use subtraction: (remainder - divisor) ≥ 0
- OK, so if it fits, what do we do?
- Remainder ${ }_{n+1}=$ Remainder $_{n}$ - divisor
- What if it doesn't fit?
- Have to restore original remainder
- Called restoring division

Integer Division

$$
\begin{aligned}
& \begin{array}{r}
1001 \\
1001012
\end{array} \\
& \text { Divisor } 1 0 0 0 \longdiv { 1 0 0 1 0 1 0 } \text { Dividend } \\
& \begin{array}{r}
-1000 \\
\hline 10
\end{array} \\
& 101 \\
& 1010 \\
& \text { - } 1000
\end{aligned}
$$

Division Improvements

- Skip first subtract
- Can't shift ' 1 ' into quotient anyway
- Hence shift first, then subtract
- Undo extra shift at end
- Hardware similar to multiplier
- Can store quotient in remainder register
- Only need 32b ALU
- Shift remainder left vs. divisor right

Improved Divider

Improved Divider

Further Improvements

- Division still takes:
- 2 ALU cycles per bit position
- 1 to check for divisibility (subtract)
- One to restore (if needed)
- Can reduce to 1 cycle per bit
- Called non-restoring division
- Avoids restore of remainder when test fails

Non-restoring Division

- Consider remainder to be restored:

$$
R_{i}=R_{i-1}-d<0
$$

- Since R_{i} is negative, we must restore it, right?
- Well, maybe not. Consider next step $\mathrm{i}+1$:

$$
R_{i+1}=2 \times\left(R_{i}\right)-d=2 \times\left(R_{i}-d\right)+d
$$

- Hence, we can compute R_{i+1} by not restoring R_{i}, and adding d instead of subtracting d
- Same value for $\mathrm{R}_{\mathrm{i}+1}$ results
- Throughput of 1 bit per cycle

NR Division Example

Iteration	Step	Divisor	Remainder
0	Initial values	0010	00000111
	Shift rem left 1	0010	00001110
1	2: Rem = Rem - Div	0010	11101110
	3b: Rem < 0 (add next), sll 0	0010	11011100
2	2: Rem = Rem + Div	0010	11111100
	3b: Rem < 0 (add next), sll 0	0010	11111000
3	2: Rem = Rem + Div	0010	00011000
	3a: Rem > 0 (sub next), sll 1	0010	00110001
4	Rem $=$ Rem - Div	0010	00010001
	Rem > 0 (sub next), sll 1	0010	00100011
	Shift Rem right by 1	0010	00010011

Summary

- Integer dividers covered
- Multicycle restoring
- Non-restoring
- Other approaches
- SRT division [sweeney, Robertson, Tocher] uses lookup tables
- Famous Intel fdiv bug caused by incomplete table
- Newton-Raphson method
- Estimate reciprocal, iterate to refine, multiply
- Beyond the scope of this course
© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Basic Arithmetic and the ALU

- Now
- Floating point representation
- Floating point addition, multiplication
- These are not crucial for the project

Floating Point

- Want to represent larger range of numbers
- Fixed point (integer): -2 $2^{n-1} . . .\left(2^{n-1}-1\right)$
- How? Sacrifice precision for range by providing exponent to shift relative weight of each bit position
- Similar to scientific notation: 3.14159×10^{23}
- Cannot specify every discrete value in the range, but can span much larger range

Floating Point

- Still use a fixed number of bits
- Sign bit S, exponent E, significand F
- Value: $(-1)^{S} \times F \times 2^{E}$
- IEEE 754 standard

	Size	Exponent	Significand	Range
Single precision	32 b	8 b	23 b	$2 \times 10^{+/-38}$
Double precision	64 b	11 b	52 b	$2 \times 10^{+/-308}$

Floating Point Exponent

- Exponent specified in biased or excess notation
- Why?
- To simplify sorting
- Sign bit is MSB to ease sorting
- 2's complement exponent:
- Large numbers have positive exponent
- Small numbers have negative exponent
- Sorting does not follow naturally

Excess or Biased Exponent

Exponent	2's Compl	Excess-127
-127	10000001	00000000
-126	10000010	00000001
\ldots	\ldots	\ldots
+127	01111111	11111110

- Value: $(-1)^{S} \times F \times 2^{(\text {E-bias })}$
- SP: bias is 127
- DP: bias is 1023

Floating Point Normalization

- S,E,F representation allows more than one representation for a particular value, e.g.

$$
1.0 \times 10^{5}=0.1 \times 10^{6}=10.0 \times 10^{4}
$$

- This makes comparison operations difficult
- Prefer to have a single representation
- Hence, normalize by convention:
- Only one digit to the left of the floating point
- In binary, that digit must be a 1
- Since leading ' 1 ' is implicit, no need to store it
- Hence, obtain one extra bit of precision for free

FP Overflow/Underflow

- FP Overflow
- Analogous to integer overflow
- Result is too big to represent
- Means exponent is too big
- FP Underflow
- Result is too small to represent
- Means exponent is too small (too negative)
- Both can raise an exception under IEEE754

IEEE754 Special Cases

Single Precision		Double Precision		Value
Exponent	Significand	Exponent	Significand	
0	0	0	0	0
0	nonzero	0	nonzero	denormalized
$1-254$	anything	$1-2046$	anything	fp number
255	0	2047	0	infinity
255	nonzero	2047	nonzero	NaN (Not a Number)

FP Rounding

- Rounding is important
- Small errors accumulate over billions of ops
- FP rounding hardware helps
- Compute extra guard bit beyond 23/52 bits
- Further, compute additional round bit beyond that
- Multiply may result in leading 0 bit, normalize shifts guard bit into product, leaving round bit for rounding
- Finally, keep sticky bit that is set whenever '1' bits are "lost" to the right
- Differentiates between 0.5 and 0.500000000001

Floating Point Addition

- Just like grade school
- First, align decimal points
- Then, add significands
- Finally, normalize result
- Example

9.997×10^{2}	9.997000×10^{2}
4.631×10^{-1}	0.004631×10^{2}
Sum	10.001631×10^{2}
Normalized	1.0001631×10^{3}

FP Multiplication

- Sign: $\mathrm{P}_{\mathrm{s}}=\mathrm{A}_{\mathrm{s}}$ xor B_{s}
- Exponent: $P_{E}=A_{E}+B_{E}$
- Due to bias/excess, must subtract bias

$$
\begin{aligned}
& \mathrm{e}=\mathrm{e} 1+\mathrm{e} 2 \\
& \mathrm{E}=\mathrm{e}+1023=\mathrm{e} 1+\mathrm{e} 2+1023 \\
& \mathrm{E}=(\mathrm{E} 1-1023)+(\mathrm{E} 2-1023)+1023 \\
& \mathrm{E}=\mathrm{E} 1+\mathrm{E} 2-1023
\end{aligned}
$$

- Significand: $P_{F}=A_{F} \times B_{F}$
- Standard integer multiply (23b or $52 \mathrm{~b}+\mathrm{g} / \mathrm{r} / \mathrm{s}$ bits)
- Use Wallace tree of CSAs to sum partial products

FP Multiplication

- Compute sign, exponent, significand
- Normalize
- Shift left, right by 1
- Check for overflow, underflow
- Round
- Normalize again (if necessary)

Summary

- Floating point representation
- Normalization
- Overflow, underflow
- Rounding
- Floating point add
- Floating point multiply

